Advertisement

Concealing Damaged Coded Images Using Improved FSE with Critical Support Area

  • Alejandro Alvaro Ramírez-Acosta
  • Mireya S. García-Vázquez
  • Sunil Kumar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)

Abstract

The transmission over error-prone networks of block-based coded images may results in the lost of the several images blocks, degrading drastically the visual quality of images. Consequently, if retransmission is not feasible, then applications of error concealment techniques are required to reduce this degradation caused mainly by the missing information. This paper proposes an adaptive and effective method to select the required support area, using suited base functions and optimal expansion coefficients, in order to conceal the damaged blocks in critical error situations. This method outperforms the concealment done by the conventional frequency selective extrapolation approach. It also performs well in current situations where significant loss of information is present and the data of the past reference images are also not available. The proposed method and the reviewed algorithms were implemented, tested and compared. Experimental results show that the proposed approach outperforms existing methods by up to 7.2 dB.

Keywords

Image spatial error concealment video adaptive frequency selective extrapolation critical support area H.264/AVC 

References

  1. 1.
    Richardson, I.E.G.: H.264 and MPEG-4 Video Compression, Video Coding for Next –generation Multimedia. John Wiley & Sons, Ltd. (2004)Google Scholar
  2. 2.
    Wang, Y., Zhu, Q.-F.: Error Control and Concealment for Video Communication: A Review. Proceedings of the IEEE 86(5), 985–995 (1998)Google Scholar
  3. 3.
    Kumar, S., Xu, L., Mandal, M.K., Panchanathan, S.: Error Resiliency Schemes in H.264/AVC standard. Visual Communications & Image Representation 17(2) (2006)Google Scholar
  4. 4.
    Alkachouh, Z., Bellanger, M.G.: Fast DCT-Based Spatial Domain Interpolation of Blocks in Images. IEEE Trans. Image Processing 9(4), 729–732 (2000)CrossRefGoogle Scholar
  5. 5.
    Wang, Y., Zhu, Q.F., Shaw, L.: Maximally Smooth Image Recovery in Transform Coding. IEEE Trans. Communication 41, 1544–1551 (1993)zbMATHCrossRefGoogle Scholar
  6. 6.
    Sun, H., Kwok, W.: Concealment of Damaged Block Transform Coded Images Using Projections onto Convex Sets. IEEE Trans. Image Processing 4(4), 470–477 (1995)CrossRefGoogle Scholar
  7. 7.
    Yang, H., Yan, B.: A Novel Spatial Error Concealment Method for Wireless Video Transmission. In: Int. Conf. Wireless Comm., Netw. and Mobile Comp., China, pp. 1–4 (September 2009)Google Scholar
  8. 8.
    Chen, Y., Yu, K., Li, J., Li, S.: An error concealment algorithm for entire frame loss in video transmission. Microsof. Reasearch, 1–4 (December 2004)Google Scholar
  9. 9.
    Wang, J., Zhu, X.: Content Adaptive Intra Error Concealment Method. In: 12th IEEE International Conference on Communication Technology, China, pp. 1224–1227 (January 2010)Google Scholar
  10. 10.
    Ndjiki-Nya, P., Koppel, M., Doshkov, D., Wiegand, T.: Automatic Structure-Aware Inpainting for Complex Image Content. In: Int. Sym. on Visual Computing (November 2008)Google Scholar
  11. 11.
    Seiler, J., Kaup, A.: A Fast Algorithm for Selective Signal Extrapolation with Arbitrary Basis Functions. Journal on Advances in Signal Processing (2011)Google Scholar
  12. 12.
    Varsa, V., Hannuksela, M.M., Wang, Y.K.: Non-normative error concealment algorithms, ITU-T VCEG-N62 (September 2001)Google Scholar
  13. 13.
    Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG: Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H.264 – ISO/IEC 14496-10 AVC), Doc. JVT-G050r1 (May 2003)Google Scholar
  14. 14.
    Wiegand, T., Sullivan, G.J., Bjøntegaard, G., Luthra, A.: Overview of the H.264/AVC Video Coding Standard. IEEE Trans. Circ. and Syst. for Vid. Tech. 13(7) (July 2003)Google Scholar
  15. 15.
    H.264/AVC Codec Software: JM14.2 Video Coding StandardGoogle Scholar
  16. 16.
    Papoulis, A.: A new algorithm in spectral analysis and band –limited extrapolation. IEEE Trans. Circuits Syst. 22, 735–742 (1975)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Papoulis, A., Chamzas, C.: Detection of hidden periodicities by adaptive extrapolation. IEEE Trans. Acoustics Speech Signal Process. 27, 492–500 (1979)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Aach, T.: Missing data interpolation by transform-based successive approximation. In: Proc. of the Workshop on Spectral Methods and Multirate Signal Processing, SMMSP 2001 (2001)Google Scholar
  19. 19.
    Lakshman, H., Ndjiki-Nya, P., Koppel, M., Doshkov, D., Wiegand, T.: An automatic structure-aware image extrapolation applied to error concealment. In: ICIP (2009)Google Scholar
  20. 20.
    Clark, A.A., Thomas, B.T., Campbell, N.W., Greenway, P.: Texture deconvolution for the Fourier-based analysis of non-rectangular regions. In: British Machine Vision Conference, pp. 193–202 (September 1999)Google Scholar
  21. 21.
    Aach, T., Metzler, V.: Defect interpolation in digital radiography - how object oriented transform coding helps. In: SPIE Medical Imaging 2001, vol. 4322 (February 2001)Google Scholar
  22. 22.
    Kaup, A., Meisinger, K., Aach, T.: Frequency selective signal extrapolation with applications to error concealment in image communication. Int. J. of Elect. Comm. 59, 147–156 (2005)CrossRefGoogle Scholar
  23. 23.
    Meisinger, K., Kaup, A.: Minimizing a weighted error criterion for spatial error concealment of missing image data. In: Proc. IEEE Int. Conf. on Image Proc., ICIP 2004, pp. 813–816 (2004)Google Scholar
  24. 24.
    Meisinger, K., Kaup, A.: Spatial error concealment of corrupted image data using frequency selective extrapolation. In: ICASSP 2004, pp. 209–212 (May 2004)Google Scholar
  25. 25.
    Kaup, A., Aach, T.: Efficient prediction of uncovered background in inter frame coding using spatial extrapolation. In: ICASSP 1994, pp. 501–504 (April 1994)Google Scholar
  26. 26.
    Kaup, A., Aach, T.: Coding of segmented images using shape independent basis functions. IEEE Trans. Image Process. 7, 937–947 (1998)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alejandro Alvaro Ramírez-Acosta
    • 1
  • Mireya S. García-Vázquez
    • 2
  • Sunil Kumar
    • 3
  1. 1.MIRAL. R&DImperial BeachUSA
  2. 2.Instituto Politécnico Nacional, Unidad CITEDITijuanaMéxico
  3. 3.SDSUSan DiegoUSA

Personalised recommendations