Improved HSI Color Space for Color Image Segmentation

  • Rodolfo Alvarado-Cervantes
  • Edgardo M. Felipe-Riveron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)


We present an interactive, semiautomatic image segmentation method that processes the color information of each pixel as a unit, thus avoiding color information scattering. The color information of every pixel is integrated in the segmented image by an adaptive color similarity function designed for direct color comparisons. The border between the achromatic and chromatic zones in the HSI color model has been transformed in order to improve the quality of the pixels segmentation when their colors are very obscure and very clear. The color integrating technique is direct, simple and computationally inexpensive, and it has also good performance in low chromaticity and low contrast images. It is shown that segmentation accuracy is above 95% as average and that the method is fast. These results are significant when compared to other solutions found in the current literature.


Color image segmentation Adaptive color similarity function Improved HSI color model Achromatic zone definition 


  1. 1.
    Alvarado-Cervantes, R.: Segmentación de patrones lineales topológicamente diferentes, mediante agrupamientos en el espacio de color HSI. M. Sc. Thesis, and Center for Computing Research, National Polytechnic Institute, Mexico (2006)Google Scholar
  2. 2.
    Felipe-Riveron, E.M., García-Ramos, M.E., Levachkine, S.P.: Problemas potenciales en la digitalización automática de los mapas cartográficos en colores. In: Proceedings of International Congress on Computation CIC IPN, Mexico City, Mexico (2000)Google Scholar
  3. 3.
    Cheng, H., Jiang, X., Sun, Y., Wang, J.: Color image segmentation: Advances and prospects. Pattern Recognition 34(12), 2259–2281 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Hanbury, A., Serra, J.A.: 3D-polar coordinate colour representation suitable for image analysis. Technical Report PRIP-TR-77, Austria (2002)Google Scholar
  5. 5.
    Alvarado-Cervantes, R., Felipe-Riveron, E.M.: An Adaptive Color Similarity Function for Color Image Segmentation. In: San Martin, C., Kim, S.-W. (eds.) CIARP 2011. LNCS, vol. 7042, pp. 113–124. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall, USA (2008)Google Scholar
  7. 7.
    Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image Processing and Applications, 1st edn. Springer, Germany (2000)Google Scholar
  8. 8.
    Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13(1), 146–165 (2003), doi:10.1117/1.1631315CrossRefGoogle Scholar
  10. 10.
    Alvarado-Cervantes, R., Felipe-Riveron, E.M., Sanchez-Fernandez, L.P.: Color Image Segmentation by Means of a Similarity Function. In: Bloch, I., Cesar Jr., R.M. (eds.) CIARP 2010. LNCS, vol. 6419, pp. 319–328. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Dubey, A., Bhattacharya, I., Godbole, S.: A Cluster-Level Semi-supervision Model for Interactive Clustering. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part I. LNCS, vol. 6321, pp. 409–424. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rodolfo Alvarado-Cervantes
    • 1
  • Edgardo M. Felipe-Riveron
    • 1
  1. 1.Center for Computing ResearchNational Polytechnic InstituteMexico

Personalised recommendations