An Human-Computer Interface Using Facial Gestures for the Game of Truco

  • Gonzalo Castillo
  • Santiago Avendaño
  • Norberto Adrián Goussies
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)


In this work we present a method to detect and recognize the signs of the card game of Truco which are a subset of facial gestures. The method uses temporal templates to represent motion and later extract features. The proposed method works in real time, allowing to use it as an human-computer interface , for example, in the context of the card game of Truco . To the best of our knowledge this is the first work that uses detection of facial gestures in the context of a game.


facial gesture temporal templates truco 


  1. 1.
    Kang, H., Lee, C.W., Jung, K.: Recognition-based gesture spotting in video games. Pattern Recogn. Lett. 25, 1701–1714 (2004)CrossRefGoogle Scholar
  2. 2.
    Davis, J.W., Bobick, A.F.: The Representation and Recognition of Human Movement Using Temporal Templates. In: CVPR 1997: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR 1997). IEEE Computer Society Press (1997)Google Scholar
  3. 3.
    Valstar, M.F., Patras, I., Pantic, M.: Facial action unit recognition using temporal templates. In: Proceedings of IEEE Int’l Workshop on Robot-Human Interaction (RO-MAN 2004), Kurashiki, Japan, pp. 253–258 (September 2004)Google Scholar
  4. 4.
    Valstar, M.F., Pantic, M.: Fully automatic facial action unit detection and temporal analysis. In: Proceedings of IEEE Int’l Conf. Computer Vision and Pattern Recognition (CVPR 2006), New York, USA, vol. 3, p. 149 (June 2006)Google Scholar
  5. 5.
    Valstar, M., Pantic, M., Patras, I.: Motion history for facial action detection from face video. In: Proceedings of IEEE Int’l Conf. Systems, Man and Cybernetics (SMC 2004), The Hague, Netherlands, pp. 635–640 (October 2004)Google Scholar
  6. 6.
    Koelstra, S., Pantic, M., Patras, I.: A dynamic texture based approach to recognition of facial actions and their temporal models. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1940–1954 (2010)CrossRefGoogle Scholar
  7. 7.
    Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 57, 137–154 (2004)CrossRefGoogle Scholar
  8. 8.
    Zelinsky, A., Zelinsky, E., Heinzmann, J.: Real-time visual recognition of facial gestures for human-computer interaction. In: Proceedings of the Int. Conf. on Automatic Face and Gesture Recognition, pp. 351–356. IEEE Computer Society Press (1996)Google Scholar
  9. 9.
    Algorri, M.E., Escobar, A.: Facial gesture recognition for interactive applications. In: Proceedings of the Fifth Mexican International Conference in Computer Science, pp. 188–195. IEEE Computer Society, Washington, DC (2004)CrossRefGoogle Scholar
  10. 10.
    Naghsh-Nilchi, A.R., et al.: An efficient algorithm for motion detection based facial expression recognition using optical flow (2006)Google Scholar
  11. 11.
    La Cascia, M., Valenti, L., Sclaroff, S.: Fully automatic, real-time detection of facial gestures from generic video. In: IEEE 6th Workshop on Multimedia Signal Processing 2004, pp. 175–178 (2004)Google Scholar
  12. 12.
    Liao, W.-K., Cohen, I.: Classifying facial gestures in presence of head motion. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005) Workshops, vol. 03, p. 77. IEEE Computer Society, Washington, DC (2005)CrossRefGoogle Scholar
  13. 13.
    Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978)Google Scholar
  14. 14.
    Ahad, M.A.R., Ogata, T., Tan, J.K., Kim, H., Ishikawa, S.: Motion recognition approach to solve overwriting in complex actions. In: FG, pp. 1–6. IEEE (2008)Google Scholar
  15. 15.
    Ahad, M., Tan, J., Kim, H., Ishikawa, S.: Solutions to motion self-occlusion problem in human activity analysis. In: 11th International Conference on Computer and Information Technology, ICCIT 2008, pp. 201–206 (December 2008)Google Scholar
  16. 16.
    Hu, M.-K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8, 179–187 (1962)zbMATHGoogle Scholar
  17. 17.
    Chang, C.-C., Lin, C.-J.: Libsvm: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)Google Scholar
  18. 18.
    Lin, H.-T., Lin, C.-J., Weng, R.C.: A note on platt’s probabilistic outputs for support vector machines. Mach. Learn. 68, 267–276 (2007)CrossRefGoogle Scholar
  19. 19.
    Freeman, W.T., Anderson, D.B., Beardsley, P.A., Dodge, C.N., Roth, M., Weissman, C.D., Yerazunis, W.S., Kage, H., Kyuma, K., Miyake, Y., Tanaka, K.-i.: Computer vision for interactive computer graphics. IEEE Comput. Graph. Appl. 18, 42–53 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gonzalo Castillo
    • 1
  • Santiago Avendaño
    • 1
  • Norberto Adrián Goussies
    • 1
  1. 1.Departamento de Computación, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations