Advertisement

Fast Non-parametric Action Recognition

  • Sebastián Ubalde
  • Norberto Adrián Goussies
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)

Abstract

In this work we propose a method for action recognition which needs no intensive learning stage, and achieves state-of-the-art classification performance. Our work is based on a method presented in the context of image classification. Unlike that method, our approach is well-suited for working with large real-world problems, thanks to an efficient organization of the training data. We show results on the KTH and IXMAS datasets. On the challenging IXMAS dataset, the average running time is reduced by 50% when using our method.

Keywords

action recognition nearest neighbor image-to-class distance 

References

  1. 1.
    Davis, J., Bobick, A.: The representation and recognition of action using temporal templates. In: CVPR 1997, pp. 928–934 (1997)Google Scholar
  2. 2.
    Weinland, D., Boyer, E., Ronfard, R.: Action recognition from arbitrary views using 3d exemplars. In: ICCV 2007, pp. 1–7 (2007)Google Scholar
  3. 3.
    Yan, P., Khan, S., Shah, M.: Learning 4d action feature models for arbitrary view action recognition. In: CVPR 2008, pp. 1–7 (2008)Google Scholar
  4. 4.
    Zelnik-manor, L., Irani, M.: Event-based analysis of video. In: Proc. CVPR, pp. 123–130 (2001)Google Scholar
  5. 5.
    Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR 2008, pp. 1–8 (2008)Google Scholar
  6. 6.
    Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: PETS 2005, pp. 65–72 (2005)Google Scholar
  7. 7.
    Le, Q., Zou, W., Yeung, S., Ng, A.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: CVPR 2011, pp. 3361–3368 (2011)Google Scholar
  8. 8.
    Goussies, N.A., Liu, Z., Yuan, J.: Efficient search of top-k video subvolumes for multi-instance action detection. In: ICME 2010, pp. 328–333 (2010)Google Scholar
  9. 9.
    Yu, G., Goussies, N., Yuan, J., Liu, Z.: Fast action detection via discriminative random forest voting and top-k subvolume search. MultMed. 13(3), 507–517 (2011)Google Scholar
  10. 10.
    Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: ICCV 2003, pp. 1470–1477 (2003)Google Scholar
  11. 11.
    Liu, J., Shah, M.: Learning human actions via information maximization. In: CVPR 2008, pp. 1–8 (2008)Google Scholar
  12. 12.
    Bregonzio, M., Gong, S., Xiang, T.: Recognising action as clouds of space-time interest points. In: CVPR 2009, pp. 1948–1955 (2009)Google Scholar
  13. 13.
    Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classification. In: CVPR 2008, pp. 1–8 (2008)Google Scholar
  14. 14.
    Wang, Z., Hu, Y., Chia, L.: Learning instance-to-class distance for human action recognition. In: ICIP 2009, pp. 3545–3548 (2009)Google Scholar
  15. 15.
    Yuan, J., Liu, Z., Wu, Y.: Discriminative video pattern search for efficient action detection. PAMI 33, 1728–1743 (2011)CrossRefGoogle Scholar
  16. 16.
    Laptev, I.: On space-time interest points. IJCV 64, 107–123 (2005)CrossRefGoogle Scholar
  17. 17.
    Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: International Conference on Computer Vision Theory and Application, VISSAPP 2009, pp. 331–340. INSTICC Press (2009)Google Scholar
  18. 18.
    Zelnik Manor, L., Irani, M., Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint action recognition using motion history volumes. CVIU 103, 249–257 (2006)Google Scholar
  19. 19.
    Nowozin, S., Bakir, G., Tsuda, K.: Discriminative subsequence mining for action classification. In: ICCV 2007, pp. 1–8 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sebastián Ubalde
    • 1
  • Norberto Adrián Goussies
    • 1
  1. 1.Departamento de Computación, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations