Advertisement

Intention, Context and Gesture Recognition for Sterile MRI Navigation in the Operating Room

  • Mithun Jacob
  • Christopher Cange
  • Rebecca Packer
  • Juan P. Wachs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)

Abstract

Human-Computer Interaction (HCI) devices such as the keyboard and the mouse are among the most contaminated regions in an operating room (OR). This paper proposes a sterile, intuitive HCI to navigate MRI images using freehand gestures. The system incorporates contextual cues and intent of the user to strengthen the gesture recognition process. Experimental results showed that while performing an image navigation task, mean intent recognition accuracy was 98.7% and that the false positive rate of gesture recognition dropped from 20.76% to 2.33% with context integration at similar recognition rates.

Keywords

Gesture recognition operating room human computer interaction 

References

  1. 1.
    Albu, A.: Vision-based user interfaces for health applications: a survey. Advances in Visual Computing, 771–782 (2006)Google Scholar
  2. 2.
    Schultz, M., Gill, J., Zubairi, S., Huber, R., Gordin, F.: Bacterial contamination of computer keyboards in a teaching hospital. Infection Control and Hospital Epidemiology 24(4), 302–303 (2003)CrossRefGoogle Scholar
  3. 3.
    Maintz, J., Viergever, M.A.: A survey of medical image registration. Medical Image Analysis 2(1), 1–36 (1998)CrossRefGoogle Scholar
  4. 4.
    Ebert, L.C., Hatch, G., Ampanozi, G., Thali, M.J., Ross, S.: You Can’t Touch This: Touch-free Navigation Through Radiological Images. Surg. Innov. (November 2011)Google Scholar
  5. 5.
    Wachs, J.P., Stern, H.I., Edan, Y., Gillam, M., Handler, J., Feied, C., et al.: A Gesture-Based Tool for Sterile Browsing of Radiology Images. J. Am. Med. Inf. Assoc. 15(3), 321–323 (2008)CrossRefGoogle Scholar
  6. 6.
    Emery, N.: The eyes have it: the neuroethology, function and evolution of social gaze. Neuroscience & Biobehavioral Reviews 24(6), 581–604 (2000)CrossRefGoogle Scholar
  7. 7.
    Langton, S.R.H.: The mutual influence of gaze and head orientation in the analysis of social attention direction. The Quarterly Journal of Experimental Psychology: Section A 53(3), 825–845 (2000)CrossRefGoogle Scholar
  8. 8.
    Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  9. 9.
    Kang, H., Woo Lee, C., Jung, K.: Recognition-based gesture spotting in video games. Pattern Recognition Letters 25(15), 1701–1714 (2004)CrossRefGoogle Scholar
  10. 10.
    Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mithun Jacob
    • 1
  • Christopher Cange
    • 1
  • Rebecca Packer
    • 1
  • Juan P. Wachs
    • 1
  1. 1.Purdue UniversityWest LafayetteUSA

Personalised recommendations