Infant Cry Classification Using Genetic Selection of a Fuzzy Model

  • Alejandro Rosales-Pérez
  • Carlos A. Reyes-García
  • Jesus A. Gonzalez
  • Emilio Arch-Tirado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)


In the last years, infant cry recognition has been of particular interest because it contains useful information to determine if the infant is hungry, has pain, or a particular disease. Several studies have been performed in order to differentiate between these kinds of cries. In this work, we propose to use Genetic Selection of a Fuzzy Model (GSFM) for classification of infant cry. GSFM selects a combination of feature selection methods, type of fuzzy processing, learning algorithm, and its associated parameters that best fit to the data. The experiments demonstrate the feasibility of this technique in the classification task. Our experimental results reach up to 99.42% accuracy.


Infant Cry Classification Model Selection Genetic Algorithms 


  1. 1.
    Barajas, S., Reyes, C.: Your fuzzy relational neural network parameters optimization with a genetic algorithm. In: The 14th IEEE International Conference on Fuzzy Systems, FUZZ 2005, pp. 684–689. IEEE (2005)Google Scholar
  2. 2.
    Barajas-Montiel, S., Reyes-García, C.: Fuzzy Support Vector Machines for Automatic Infant Cry Recognition. In: Huang, D.-S., Li, K., Irwin, G. (eds.) Intelligent Computing in Signal Processing and Pattern Recognition. LNCIS, vol. 345, pp. 876–881. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Barajas-Montiel, S.E., Reyes-García, C.A., Arch-Tirado, E., Mandujano, M.: Improving Baby Caring with Automatic Infant Cry Recognition. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol. 4061, pp. 691–698. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Beck, J., Shultz, E., et al.: The use of relative operating characteristic (roc) curves in test performance evaluation. Archives of Pathology & Laboratory Medicine 110(1), 13 (1986)Google Scholar
  5. 5.
    Boersma, P., Weenink, D.: Praat v. 4.0. 8. A system for doing phonetics by computer. Institute of Phonetic Sciences of the University of Amsterdam (2002)Google Scholar
  6. 6.
    Cano Ortiz, S.D., Escobedo Beceiro, D.I., Ekkel, T.: A Radial Basis Function Network Oriented for Infant Cry Classification. In: Sanfeliu, A., Martínez Trinidad, J.F., Carrasco Ochoa, J.A. (eds.) CIARP 2004. LNCS, vol. 3287, pp. 374–380. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Engelbrecht, A.: Computational intelligence: an introduction. Wiley (2007)Google Scholar
  8. 8.
    Galaviz, O.F.R., García, C.A.R.: Infant Cry Classification to Identify Hypo Acoustics and Asphyxia Comparing an Evolutionary-Neural System with a Neural Network System. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 949–958. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Hariharan, M., Yaacob, S., Awang, S.A.: Pathological infant cry analysis using wavelet packet transform and probabilistic neural network. Expert Systems with Applications 38(12), 15377–15382 (2011), CrossRefGoogle Scholar
  10. 10.
    Holland, J.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor MI (1975)Google Scholar
  11. 11.
    Lederman, D.: Automatic classification of infants cry. Ben Gorion University. M.Sc. Thesis P, pp. 1–11 (2002)Google Scholar
  12. 12.
    Lederman, D., Cohen, A., Zmora, E., Wermke, K., Hauschildt, S., Stellzig-Eisenhauer, A.: On the use of hidden markov models in infants’ cry classification. In: The 22nd Convention of Electrical and Electronics Engineers in Israel, pp. 350–352. IEEE (2002)Google Scholar
  13. 13.
    Lederman, D., Zmora, E., Hauschildt, S., Stellzig-Eisenhauer, A., Wermke, K.: Classification of cries of infants with cleft-palate using parallel hidden markov models. Medical and Biological Engineering and Computing 46, 965–975 (2008)CrossRefGoogle Scholar
  14. 14.
    Orozco-García, J., Reyes-García, C.A.: A Study on the Recognition of Patterns of Infant Cry for the Identification of Deafness in Just Born Babies with Neural Networks. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 342–349. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Reyes-Galaviz, O.F., Tirado, E.A., Reyes-Garcia, C.A.: Classification of Infant Crying to Identify Pathologies in Recently Born Babies with ANFIS. In: Miesenberger, K., Klaus, J., Zagler, W.L., Burger, D. (eds.) ICCHP 2004. LNCS, vol. 3118, pp. 408–415. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Reyes-Galaviz, O.F., Verduzco, A., Arch-Tirado, E., Reyes-García, C.A.: Analysis of an Infant Cry Recognizer for the Early Identification of Pathologies. In: Chollet, G., Esposito, A., Faúndez-Zanuy, M., Marinaro, M. (eds.) Nonlinear Speech Modeling. LNCS (LNAI), vol. 3445, pp. 404–409. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Rosales-Pérez, A., Reyes-García, C.A., Gómez-Gil, P.: Genetic Fuzzy Relational Neural Network for Infant Cry Classification. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Ben-Youssef Brants, C., Hancock, E.R. (eds.) MCPR 2011. LNCS, vol. 6718, pp. 288–296. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Rosales-Pérez, A., Reyes-García, C.A., Gómez-Gil, P., Gonzalez, J.A., Altamirano, L.: Genetic Selection of Fuzzy Model for Acute Leukemia Classification. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part I. LNCS, vol. 7094, pp. 537–548. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Sahak, R., Mansor, W., Lee, Y.K., Yassin, A.I.M., Zabidi, A.: Performance of combined support vector machine and principal component analysis in recognizing infant cry with asphyxia. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6292–6295. IEEE (2010)Google Scholar
  20. 20.
    Suaste-Rivas, I., Díaz-Méndez, A., Reyes-García, C.A., Reyes-Galaviz, O.F.: Hybrid Neural Network Design and Implementation on FPGA for Infant Cry Recognition. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2006. LNCS (LNAI), vol. 4188, pp. 703–709. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Suaste-Rivas, I., Reyes-Galaviz, O.F., Diaz-Mendez, A., Reyes-Garcia, C.A.: A Fuzzy Relational Neural Network for Pattern Classification. In: Sanfeliu, A., Martínez Trinidad, J.F., Carrasco Ochoa, J.A. (eds.) CIARP 2004. LNCS, vol. 3287, pp. 358–365. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Suaste-Rivas, I., Reyes-Galviz, O.F., Diaz-Mendez, A., Reyes-Garcia, C.A.: Implementation of a Linguistic Fuzzy Relational Neural Network for Detecting Pathologies by Infant Cry Recognition. In: Lemaître, C., Reyes, C.A., González, J.A. (eds.) IBERAMIA 2004. LNCS (LNAI), vol. 3315, pp. 953–962. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1(6), 80–83 (1945)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alejandro Rosales-Pérez
    • 1
  • Carlos A. Reyes-García
    • 1
  • Jesus A. Gonzalez
    • 1
  • Emilio Arch-Tirado
    • 2
  1. 1.Computer Science DepartmentNational Institute of Astrophysics, Optics and Electronics (INAOE)TonantzintlaMexico
  2. 2.Laboratory of BioacousticsNational Institute of Rehabilitation (INR)Mexico CityMexico

Personalised recommendations