Advertisement

Combining Re-Ranking and Rank Aggregation Methods

  • Daniel Carlos Guimarães Pedronette
  • Ricardo da S. Torres
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)

Abstract

Content-Based Image Retrieval (CBIR) aims at retrieving the most similar images in a collection by taking into account image visual properties. In this scenario, accurately ranking collection images is of great relevance. Aiming at improving the effectiveness of CBIR systems, re-ranking and rank aggregation algorithms have been proposed. However, different re-ranking and rank aggregation approaches produce different image rankings. These rankings are complementary and, therefore, can be further combined aiming at obtaining more effective results. This paper presents novel approaches for combining re-ranking and rank aggregation methods aiming at improving the effectiveness of CBIR systems. Several experiments were conducted involving shape, color, and texture descriptors. Experimental results demonstrate that our approaches can improve the effectiveness of CBIR systems.

Keywords

Image Retrieval Combination Approach Mean Average Precision Image Descriptor CBIR System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arica, N., Vural, F.T.Y.: Bas: a perceptual shape descriptor based on the beam angle statistics. Pattern Recognition Letters 24(9-10), 1627–1639 (2003)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bai, X., Wang, B., Wang, X., Liu, W., Tu, Z.: Co-transduction for shape retrieval. In: Daniilidis, K. (ed.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 328–341. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. PAMI 24(4), 509–522 (2002)CrossRefGoogle Scholar
  4. 4.
    Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover (1966)Google Scholar
  5. 5.
    Cormack, G.V., Clarke, C.L.A., Buettcher, S.: Reciprocal rank fusion outperforms condorcet and individual rank learning methods. In: SIGIR 2009, pp. 758–759 (2009)Google Scholar
  6. 6.
    Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: SODA 2003, pp. 28–36 (2003)Google Scholar
  7. 7.
    Gopalan, R., Turaga, P., Chellappa, R.: Articulation-invariant representation of non-planar shapes - supplementary material. In: Daniilidis, K. (ed.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 286–299. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Huang, J., Kumar, S.R., Mitra, M., Zhu, W.J., Zabih, R.: Image indexing using color correlograms. In: CVPR 1997, p. 762 (1997)Google Scholar
  9. 9.
    Kontschieder, P., Donoser, M., Bischof, H.: Beyond Pairwise Shape Similarity Analysis. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009, Part III. LNCS, vol. 5996, pp. 655–666. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Kovalev, V., Volmer, S.: Color co-occurence descriptors for querying-by-example. In: MMM 1998, p. 32 (1998)Google Scholar
  11. 11.
    Latecki, L.J., Lakmper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: CVPR, pp. 424–429 (2000)Google Scholar
  12. 12.
    Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. PAMI 29(2), 286–299 (2007)CrossRefGoogle Scholar
  13. 13.
    Ling, H., Yang, X., Latecki, L.J.: Balancing Deformability and Discriminability for Shape Matching. In: Daniilidis, K. (ed.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 411–424. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. PAMI 24(7), 971–987 (2002)CrossRefGoogle Scholar
  15. 15.
    Pedronette, D.C.G., da S. Torres, R.: Exploiting Contextual Information for Image Re-ranking. In: Bloch, I., Cesar Jr., R.M. (eds.) CIARP 2010. LNCS, vol. 6419, pp. 541–548. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Pedronette, D.C.G., da, S., Torres, R.: Shape retrieval using contour features and distance optmization. In: VISAPP, vol. 1, pp. 197–202 (2010)Google Scholar
  17. 17.
    Pedronette, D.C.G., da, S., Torres, R.: Exploiting contextual information for rank aggregation. In: ICIP, pp. 97–100 (2011)Google Scholar
  18. 18.
    Guimarães Pedronette, D.C., da S. Torres, R.: Image Re-ranking and Rank Aggregation Based on Similarity of Ranked Lists. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 369–376. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    da, S., Torres, R., Falcão, A.X.: Contour Salience Descriptors for Effective Image Retrieval and Analysis. Image and Vision Computing 25(1), 3–13 (2007)CrossRefGoogle Scholar
  20. 20.
    Stehling, R.O., Nascimento, M.A., Falcão, A.X.: A compact and efficient image retrieval approach based on border/interior pixel classification. In: CIKM 2002, pp. 102–109 (2002)Google Scholar
  21. 21.
    Swain, M.J., Ballard, D.H.: Color indexing. IJCV 7(1), 11–32 (1991)CrossRefGoogle Scholar
  22. 22.
    Tao, B., Dickinson, B.W.: Texture recognition and image retrieval using gradient indexing. JVCIR 11(3), 327–342 (2000)Google Scholar
  23. 23.
    Tu, Z., Yuille, A.L.: Shape Matching and Recognition – Using Generative Models and Informative Features. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004, Part III. LNCS, vol. 3023, pp. 195–209. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    van de Weijer, J., Schmid, C.: Coloring Local Feature Extraction. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 334–348. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Yang, X., Koknar-Tezel, S., Latecki, L.J.: Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In: CVPR, pp. 357–364 (2009)Google Scholar
  26. 26.
    Yang, X., Latecki, L.J.: Affinity learning on a tensor product graph with applications to shape and image retrieval. In: CVPR, pp. 2369–2376 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniel Carlos Guimarães Pedronette
    • 1
  • Ricardo da S. Torres
    • 1
  1. 1.Recod Lab - Institute of ComputingUniversity of CampinasCampinasBrazil

Personalised recommendations