Nested Dichotomies Based on Clustering

  • Miriam Mónica Duarte-Villaseñor
  • Jesús Ariel Carrasco-Ochoa
  • José Francisco Martínez-Trinidad
  • Marisol Flores-Garrido
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)

Abstract

Multiclass problems, i.e., classification problems involving more than two classes, are a common scenario in supervised classification. An important approach to solve this type of problems consists in using binary classifiers repeated times; within this category we find nested dichotomies. However, most of the methods for building nested dichotomies use a random strategy, which does not guarantee finding a good one. In this work, we propose new non-random methods for building nested dichotomies, using the idea of reducing misclassification errors by separating in the higher levels those classes that are easier to separate; and, in the lower levels those classes that are more difficult to separate. In order to evaluate the performance of the proposed methods, we compare them against methods that randomly build nested dichotomies, using some datasets (with mixed data) taken from the UCI repository.

Keywords

Nested Dichotomies Binarization Multiclass Problems Supervised Classification 

References

  1. 1.
    Hastie, T., Tibshirani, R.: Classification by pairwise coupling. Ann. Statist. 26(2), 451–471 (1998)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn. Res. 5, 101–141 (2004)MathSciNetMATHGoogle Scholar
  3. 3.
    Frank, E., Kramer, S.: Ensembles of Balanced Nested Dichotomies for Multi-class Problems. In: 21st International Conference on Machine Learning, ICML 2004, pp. 305–312. ACM, New York (2004)Google Scholar
  4. 4.
    Dong, L., Frank, E., Kramer, S.: Ensembles of Balanced Nested Dichotomies for Multi-class Problems. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 84–95. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Rodrguez, J.J., Garca-Osorio, C., Maudes, J.: Forests of Nested Dichotomies. Pat. Rec. Lett. 31(2), 125–132 (2010)CrossRefGoogle Scholar
  6. 6.
    Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)MathSciNetMATHGoogle Scholar
  7. 7.
    Freund, Y., Schapire, R.E.: Game theory, on-line prediction and boosting. In: 9th Annual Conference on Computational Learning Theory, COLT 1996, pp. 325–332 (1996)Google Scholar
  8. 8.
    Webb, G.I.: MultiBoosting: A Technique for Combining Boosting and Wagging. Mach. Learn. 40(2), 159–196 (2000)CrossRefGoogle Scholar
  9. 9.
    Kazuaki, A., Mineichi, K.: A top-down construction of class decision trees with selected features and classifiers. In: International Conference on High Performance Computing and Simulation, HPCS, pp. 390–398 (2010)Google Scholar
  10. 10.
    Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. J. Art. Intell. Res. 6, 1–34 (1997)MathSciNetMATHGoogle Scholar
  11. 11.
    Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2010), http://archive.ics.uci.edu/ml

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Miriam Mónica Duarte-Villaseñor
    • 1
  • Jesús Ariel Carrasco-Ochoa
    • 1
  • José Francisco Martínez-Trinidad
    • 1
  • Marisol Flores-Garrido
    • 1
  1. 1.Instituto Nacional de Astrofísica, Óptica y ElectrónicaSanta María TonantzintlaMexico

Personalised recommendations