Advertisement

On the Vulnerability of Iris-Based Systems to a Software Attack Based on a Genetic Algorithm

  • Marta Gomez-Barrero
  • Javier Galbally
  • Pedro Tome
  • Julian Fierrez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)

Abstract

The vulnerabilities of a standard iris verification system to a novel indirect attack based on a binary genetic algorithm are studied. The experiments are carried out on the iris subcorpus of the publicly available BioSecure DB. The attack has shown a remarkable performance, thus proving the lack of robustness of the tested system to this type of threat. Furthermore, the consistency of the bits of the iris code is analysed, and a second working scenario discarding the fragile bits is then tested as a possible countermeasure against the proposed attack.

Keywords

Security vulnerabilities iris recognition genetic algorithm countermeasures 

References

  1. 1.
    Jain, A.K., Ross, A., Pankanti, S.: Biometrics: a tool for information security. IEEE TIFS 1(2), 125–143 (2006)Google Scholar
  2. 2.
    Matsumoto, T.: Gummy finger and paper iris: an update. In: Proc. WISR, pp. 187–192 (2004)Google Scholar
  3. 3.
    Martinez-Diaz, M., Fierrez, J., et al.: An evaluation of indirect attacks and countermeasures in fingerprint verification systems. Pattern Recognition Letters 32, 1643–1651 (2011)CrossRefGoogle Scholar
  4. 4.
    Wei, Z., Qiu, X., et al.: Counterfeit iris detection based on texture analysis. In: Proc. ICPR, pp. 1–4 (2008)Google Scholar
  5. 5.
    Ruiz-Albacete, V., Tome-Gonzalez, P., Alonso-Fernandez, F., Galbally, J., Fierrez, J., Ortega-Garcia, J.: Direct Attacks Using Fake Images in Iris Verification. In: Schouten, B., Juul, N.C., Drygajlo, A., Tistarelli, M. (eds.) BIOID 2008. LNCS, vol. 5372, pp. 181–190. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Soutar, C., Gilroy, R., Stoianov, A.: Biometric system performance and security. In: Proc. IEEE AIAT (1999)Google Scholar
  7. 7.
    Galbally, J., McCool, C., Fierrez, J., Marcel, S.: On the vulnerability of face verification systems to hill-climbing attacks. Pattern Recognition 43, 1027–1038 (2010)zbMATHCrossRefGoogle Scholar
  8. 8.
    Masek, L., Kovesi, P.: Matlab source code for a biometric identification system based on iris patterns. Master’s thesis, School of Computer Science and Software Engineering, University of Western Australia (2003)Google Scholar
  9. 9.
    Ortega-Garcia, J., Fierrez, J., others: The multi-scenario multi-environment BioSecure multimodal database (BMDB). IEEE TPAMI 32, 1097–1111 (2010)CrossRefGoogle Scholar
  10. 10.
    Daugman, J.: How iris recognition works. IEEE TCSVT 14(1), 21–30 (2004)Google Scholar
  11. 11.
    Daugman, J.: 4. In: Iris Recognition, pp. 71–90. Springer (2008)Google Scholar
  12. 12.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc. (1989)Google Scholar
  13. 13.
    Goldberg, D.: The design of innovation: lessons from and for competent genetic algorithms. Kluwer Academic Publishers (2002)Google Scholar
  14. 14.
    Grother, P., Tabassi, E., Quinn, G.W., Salamon, W.: Irex i: Performance of iris recognition algorithms on standard images. Technical report, National Institute of Standards and Technology (2009)Google Scholar
  15. 15.
    ANSI: Ansi.x9.84 ANSI X9.84-2001, Biometric Information Management and SecurityGoogle Scholar
  16. 16.
    Hollingsworth, K.P., Bowyer, K.W., Flynn, P.J.: The best bits in an iris code. IEEE TPAMI 31(6), 964–973 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marta Gomez-Barrero
    • 1
  • Javier Galbally
    • 1
  • Pedro Tome
    • 1
  • Julian Fierrez
    • 1
  1. 1.Biometric Recognition Group-ATVS, EPSUniversidad Autonoma de MadridMadridSpain

Personalised recommendations