Dissimilarity Representations Based on Multi-Block LBP for Face Detection

  • Yoanna Martínez-Díaz
  • Heydi Méndez-Vázquez
  • Yenisel Plasencia-Calaña
  • Edel B. García-Reyes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)


Face representation is one of the open problems in face detection. The recently proposed Multi-Block Local Binary Patterns (MB-LBP) representation has shown good results for this purpose. Although dissimilarity representation has proved to be effective in a variety of pattern recognition problems, to the best of our knowledge, it has never been used for face detection. In this paper, we propose new dissimilarity representations based on MB-LBP features for this task. Different experiments conducted on a public database, showed that the proposed representations are more discriminative than the original MB-LBP representation when classifying faces. Using the dissimilarity representations, a good classification accuracy is achieved even when less training data is available.


face detection dissimilarity representation MB-LBP 


  1. 1.
    Zhang, C., Zhang, Z.: A survey of recent advances in face detection. Technical Report MSR-TR-2010-66Google Scholar
  2. 2.
    Yang, M., Kriegman, D., Ahuja, N.: Detecting faces in images: A survey. IEEE Transactions on PAMI 24(1), 399–458 (2002)Google Scholar
  3. 3.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Computer Society Conference on CVPR, vol. 1, pp. 511–518 (2001)Google Scholar
  4. 4.
    Trefný, J., Matas, J.: Extended set of local binary patterns for rapid object detection. In: Proceedings of the Computer Vision Winter Workshop 2010 (2010)Google Scholar
  5. 5.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29(1), 51–59 (1996)CrossRefGoogle Scholar
  6. 6.
    Zhang, L., Chu, R., Xiang, S., Liao, S., Li, S.: Face detection based on multi-block lbp representation. In: Proceedings of IAPR/IEEE ICB (2007)Google Scholar
  7. 7.
    Louis, W., Plataniotis, K.N.: Co-occurrence of local binary patterns features for frontal face detection in surveillance applications. In: EURASIP (2011)Google Scholar
  8. 8.
    Pekalska, E.: The Dissimilarity Representation For Pattern Recognition. Foundations and Applications. World Scientfic (2005)Google Scholar
  9. 9.
    Pekalska, E., Duin, R.P., Paclík, P.: Prototype selection for dissimilarity-based classifiers. Pattern Recognition 39(2), 189–208 (2006)zbMATHCrossRefGoogle Scholar
  10. 10.
    Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-line Learning and an Application to Boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  11. 11.
    Akbaş, E., Yarman-Vural, F.T.: Design of a Feature Set for Face Recognition Problem. In: Levi, A., Savaş, E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, pp. 239–247. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Carbonetto, P.S.: Robust object detection using boosted learning. Technical report, Department of Computer Science,University of British Columbia, Vancouver, Canada (April 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yoanna Martínez-Díaz
    • 1
  • Heydi Méndez-Vázquez
    • 1
  • Yenisel Plasencia-Calaña
    • 1
  • Edel B. García-Reyes
    • 1
  1. 1.Advanced Technologies Application CenterHavanaCuba

Personalised recommendations