Advertisement

New Strategies for Evaluating the Performance of Typical Testor Algorithms

  • Eduardo Alba
  • Diego Guilcapi
  • Julio Ibarra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)

Abstract

Typical testors have been used in feature selection and supervised classification problems in the logical combinatorial pattern recognition. Several algorithms have been used to find the set of all typical testors of a basic matrix. This algorithms are based on different heuristics. There is no doubt these algorithms find the set of all typical testors. However, the time spent on this search strategies, differs between them. Due to size of this set, the search time is a critical factor. There is not a standard procedure to evaluate the time performance of typical testors algorithms. In this paper we introduce a strategy to solve this problem through a new set of test matrices. These test matrices have the property that the set’s cardinality of all typical testors is known in advance.

Keywords

Logical combinatorial PR feature selection testor theory typical testors algorithms test matrices 

References

  1. 1.
    Dmitriev, A.N., Zhuravlev, Y.I., Krendeleiev, F.: On the mathematical principles of patterns and phenomena classification. Diskretnyi Analiz. 7, 3–15 (1966); Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. J. Mol. Biol. 147, 195–197 (1981)Google Scholar
  2. 2.
    Ruiz, J., Lazo, M., Alba, E.: An overview of the concept of testor. Pattern Recognition 34, 13–21 (2001)Google Scholar
  3. 3.
    Lazo, M., Ruiz, J.: Determining the feature relevance for non classically described objects and a new algorithm to compute typical fuzzy testors. Pattern Recognition Letters 16, 1259–1265 (1995)CrossRefGoogle Scholar
  4. 4.
    Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F.: Feature Selection for Natural Disaster Texts Classification Using Testors. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 424–429. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Vázquez, R., Godoy, S.: Using testor theory to reduce the dimension of neural network models. Special Issue in Neural Networks and Associative Memories 28, 93–103 (2007)Google Scholar
  6. 6.
    Santos, J., Carrasco, A., Martínez, J.: Feature selection using typical testors applied to estimation of stellar parameters. Computación y Sistemas 8, 15–23 (2004)Google Scholar
  7. 7.
    Pons-Porrata, A., Gil-García, R.J., Berlanga-Llavori, R.: Using Typical Testors for Feature Selection in Text Categorization. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 643–652. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Pons-Porrata, A., Ruiz-Shulcloper, J., Berlanga-Llavori, R.: A Method for the Automatic Summarization of Topic-Based Clusters of Documents. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 596–603. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Li, F., Zhu, Q., Lin, X.: Topic discovery in research literature based on non-negative matrix factorization and testor theory. In: Asia-Pacific Conference on Information Processing, vol. 2, pp. 266–269 (2009)Google Scholar
  10. 10.
    Sánchez, G.: Efficient algorithms to calculate typical testors from a basic matrix. In: Design and Program. Master Thesis, BUAP, México (1997)Google Scholar
  11. 11.
    Morales-Manilla, L.R., Sanchez-Diaz, G.: FS-EX Plus: A New Algorithm for the Calculation of Typical FS-Testor Set. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 380–386. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Sánchez, G., Lazo, M., Fuentes, O.: Genetic algorithm to calculate minimal typical testors. In: Proceedings of the IV Iberoamerican Symposium on Pattern Recognition, pp. 207–214 (1999)Google Scholar
  13. 13.
    Alba, E., Santana, R., Ochoa, A., Lazo, M.: Finding typical testors by using an evolutionary strategy. In: Proceedings of the V Ibero American Symposium on Pattern Recognition, pp. 267–278 (2000)Google Scholar
  14. 14.
    Garey, M., Johson, D.: Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  15. 15.
    Alba, E., Santana, R.: Generación de matrices para evaluar el desempeño de estrategias de búsqueda de testores típicos. Avances en Ciencias e Ingenierías, 30–35 (2010)Google Scholar
  16. 16.
    Sanchez-Diaz, G., Piza-Davila, I., Lazo-Cortes, M., Mora-Gonzalez, M., Salinas-Luna, J.: A Fast Implementation of the CT_EXT Algorithm for the Testor Property Identification. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds.) MICAI 2010, Part II. LNCS, vol. 6438, pp. 92–103. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eduardo Alba
    • 1
  • Diego Guilcapi
    • 1
  • Julio Ibarra
    • 1
  1. 1.Colegio de Ciencias e Ingeniería, Diego de Robles y Vía InteroceánicaUniversidad San Francisco de QuitoQuitoEcuador

Personalised recommendations