Combining Face and Facial Feature Detectors for Face Detection Performance Improvement

  • Modesto Castrillón-Santana
  • Daniel Hernández-Sosa
  • Javier Lorenzo-Navarro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)


In this paper, we experimentally study the combination of face and facial feature detectors to improve face detection performance. The face detection problem, as suggeted by recent face detection challenges, is still not solved. Face detectors traditionally fail in large-scale problems and/or when the face is occluded or different head rotations are present. The combination of face and facial feature detectors is evaluated with a public database. The obtained results evidence an improvement in the positive detection rate while reducing the false detection rate. Additionally, we prove that the integration of facial feature detectors provides useful information for pose estimation and face alignment.


Detection Rate Facial Feature Face Detection False Detection Rate Positive Detection Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Atanasoaei, C., McCool, C., Marcel, S.: A principled approach to remove false alarms by modelling the context of a face detector. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 1–11 (2010)Google Scholar
  2. 2.
    Castrillón, M., Déniz, O., Hernández, D., Lorenzo, J.: A comparison of face and facial feature detectors based on the viola-jones general object detection framework. Machine Vision and Applications 22(3), 481–494 (2011)Google Scholar
  3. 3.
    Castrillón, M., Hernández, D., Lorenzo, J.: An study on ear detection and its applications to face detection. In: Conferencia de la Asociación Española para la Inteligencia Artificial (2011)Google Scholar
  4. 4.
    Frome, A., Cheung, G., Abdulkader, A., Zennaro, M., Wu, B., Bissacco, A., Adam, H., Neven, H., Vincent, L.: Large-scale privacy protection in google street view. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 2373–2380 (2009)Google Scholar
  5. 5.
    Heisele, B., Serre, T., Poggio, T.: A component-based framework for face detection and identification. International Journal of Computer Vision Research 74(2) (August 2007)Google Scholar
  6. 6.
    Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts (October 2007)Google Scholar
  7. 7.
    Intel. Open Source Computer Vision Library, v2.3 (July 2011), (last visited May 2012)
  8. 8.
    Jain, V., Learned-Miller, E.: FDDB: A benchmark for face detection in unconstrained settings. Technical report, University of Massachusetts (2010)Google Scholar
  9. 9.
    Lanitis, A., Taylor, C., Cootes, T.F.: Automatic interpretation and coding of face image using flexible models. IEEE Trans. on Pattern Analysis and Machine Intelligence 19(7) (July 1997)Google Scholar
  10. 10.
    Lienhart, R., Kuranov, A., Pisarevsky, V.: Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 297–304. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Mäkinen, E., Raisamo, R.: Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(3), 541–547 (2008)CrossRefGoogle Scholar
  12. 12.
    Parris, J., Wilber, M., Helfin, B., Rara, H., El-barkouky, A., Farag, A., Movellanand, J., Castrillón-Santana, M., Lorenzo-Navarro, J., Teli, M.N., Marcel, S., Atanasoaei, C., Boult, T.: Face and eye detection on hard datasets. In: IEEE IAPR International Joint Conference on Biometrics, IJCB (2011)Google Scholar
  13. 13.
    Rabie, A., Lang, C., Hanheide, M., Castrillón, M., Sagerer, G.: Automatic initialization for facial analysis in interactive robotics. In: 6th International Conference on Computer Vision Systems, Vision for Cognitive Systems, pp. 517–526 (2008)Google Scholar
  14. 14.
    Schneiderman, H., Kanade, T.: A statistical method for 3D object detection applied to faces and cars. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1746–1759 (2000)Google Scholar
  15. 15.
    Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 151–173 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Modesto Castrillón-Santana
    • 1
  • Daniel Hernández-Sosa
    • 1
  • Javier Lorenzo-Navarro
    • 1
  1. 1.SIANI, Universidad de Las Palmas de Gran CanariaSpain

Personalised recommendations