Skip to main content

Simulating Light Adaptation in the Retina with Rod-Cone Coupling

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2012 (ICANN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7552))

Included in the following conference series:

Abstract

The retina performs various key operations on incoming images in order to facilitate higher-level visual processing. Since the retina outperforms existing image enhancing techniques, it follows that computational simulations with biological plausibility are best suited to inform their design and development, as well as help us better understand retina functionality. Recently, it has been determined that quality of vision is dependant on the interaction between rod and cone pathways, traditionally thought to be wholly autonomous. This interaction improves the signal-to-noise ratio (SNR) within the retina and in turn enhances boundary detection by cones. In this paper we therefore propose the first cone simulator that incorporates input from rods. Our results show that rod-cone convergence does improve SNR, therefore allowing for improved contrast sensitivity, and consequently visual perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arici, T., Altunbasak, Y.: Image local contrast enhancement using adaptive non-linear filters. In: IEEE International Conference on Image Processing, pp. 2881–2884 (2006)

    Google Scholar 

  2. Baylor, D.: How photons start vision. Proceedings of the National Academy of Sciences 93(2), 560–565 (1996)

    Article  Google Scholar 

  3. Graf, H.G., Dollberg, A., Spüntrup, J.D., Warkentin, K.: HDR Sub-retinal Implant for the Vision Impaired High-Dynamic-Range (HDR) Vision. Springer Series in Advanced Microelectronics, vol. 26, pp. 141–146. Springer, Heidelberg (2007)

    Google Scholar 

  4. Hood, D.C.: Lower-level visual processing and models of light adaptation. Annual Review of Psychology 49, 503–535 (1998)

    Article  Google Scholar 

  5. Hood, D., Birch, D.: Human cone receptor activity: The leading edge of the a–wave and models of receptor activity. Visual Neuroscience 10(05), 857–871 (1993)

    Article  Google Scholar 

  6. Macknik, S.L., Livingstone, M.S.: Neuronal correlates of visibility and invisibility in the primate visual system. Nature Neuroscience 1(2), 144 (1998)

    Article  Google Scholar 

  7. Mantiuk, R., Myszkowski, K., Seidel, H.P.: A perceptual framework for contrast processing of high dynamic range images. ACM Trans. Appl. Percept. 3(3), 286–308 (2006), http://doi.acm.org/10.1145/1166087.1166095

    Article  Google Scholar 

  8. Schiller, P.H.: Parallel information processing channels created in the retina. Proceedings of the National Academy of Sciences (2010)

    Google Scholar 

  9. Schnapf, J., Nunn, B., Baylor, D.: Visual transduction in cones of the monkey macaca fascicularis 427(1), 681–713 (1990)

    Google Scholar 

  10. Shah, S., Levine, M.D.: Visual information processing in primate cone pathways. i. a model. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 26(2), 259–274 (1996)

    Article  Google Scholar 

  11. Shapley, R., Enroth-Cugell, C.: Visual adaptation and retinal gain controls, vol. 3, ch. 9, pp. 263–346. Pergamon (1984)

    Google Scholar 

  12. Trümpler, J., Dedek, K., Schubert, T., de Sevilla Müller, L.P., Seeliger, M., Humphries, P., Biel, M., Weiler, R.: Rod and cone contributions to horizontal cell light responses in the mouse retina. Journal of Neuroscience 28(27), 6818–6825 (2008)

    Article  Google Scholar 

  13. Wilson, H.R.: A neural model of foveal light adaptation and afterimage formation. Visual Neuroscience 14(03), 403–423 (1997)

    Article  Google Scholar 

  14. Wohrer, A., Kornprobst, P.: Virtual retina: A biological retina model and simulator, with contrast gain control. Journal of Computational Neuroscience 26(2), 219–249 (2009)

    Article  MathSciNet  Google Scholar 

  15. Yau, K.: Phototransduction mechanism in retinal rods and cones: The friedenwald lecture. Investigative Ophthalmology and Visual Science 35(1), 9–32 (1994)

    Google Scholar 

  16. Zaghloul, K.A., Boahen, K.: A silicon retina that reproduces signals in the optic nerve. Journal of Neural Engineering 3(4), 257–267 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Muchungi, K., Casey, M. (2012). Simulating Light Adaptation in the Retina with Rod-Cone Coupling. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33269-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33269-2_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33268-5

  • Online ISBN: 978-3-642-33269-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics