Skip to main content

Differential Entropy of Multivariate Neural Spike Trains

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2012 (ICANN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7552))

Included in the following conference series:

  • 4146 Accesses

Abstract

Most approaches to analysing the spatiotemporal dynamics of neural populations involve binning spike trains. This is likely to underestimate the information carried by spike timing codes, in practice, if they involve high precision patterns of inter-spike intervals (ISIs). In this paper we set out to investigate the differential entropy of multivariate neural spike trains, following the work of Victor. In our framework, the unidimensional special case corresponds to estimating the differential entropy of the ISI distribution; this is generalised to multidimensional cases including patterns across successive ISIs and across cells. We investigated the differential entropy of simulated spike trains with increasing dimensionality, and applied our approach to electrophysiological data recorded from the mouse lateral geniculate nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Averbeck, B.B., Lee, D.: Coding and transmission of information by neural ensembles. Trends in Neurosciences 27(4), 225–230 (2004)

    Article  Google Scholar 

  2. Correia, M.J., Landolt, J.P.: A point process analysis of the spontaneous activity of anterior semicicular canal units in the anesthetized pigeon. Biol. Cybern. 27(4), 199–213 (1977)

    Article  MATH  Google Scholar 

  3. Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  4. Darbellay, G.A., Vajda, I.: Entropy expressions for multivariate continuous distributions. IEEE Transactions on Information Theory 46(2), 709–712 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of neural science, 4th edn. McGraw-Hill, Health Professions Division, New York (2000)

    Google Scholar 

  6. Kozachenko, I.F., Leonenko, N.N.: Sample estimate of the entropy of a random vector.. Probl. Inf. Transm. 23(1-2), 95–101 (1987) (English Russian original)

    MathSciNet  MATH  Google Scholar 

  7. Ma, S.-K.: Calculation of entropy from data of motion. Journal of Statistical Physics 26(2), 221–240 (1981)

    Article  Google Scholar 

  8. Montani, F., Kohn, A., Smith, M.A., Schultz, S.R.: The Role of Correlations in Direction and Contrast Coding in the Primary Visual Cortex. J. Neurosci. 27(9), 2338–2348 (2007)

    Article  Google Scholar 

  9. Panzeri, S., Petersen, R.S., Schultz, S.R., Lebedev, M., Diamond, M.E.: The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron 29(3), 769–777 (2001)

    Article  Google Scholar 

  10. Panzeri, S., Schultz, S.R.: A unified approach to the study of temporal, correlational, and rate coding. Neural Comput. 13(6), 1311–1349 (2001)

    Article  MATH  Google Scholar 

  11. Rodieck, R.W., Kiang, N.Y., Gerstein, G.L.: Some quantitative methods for the study of spontaneous activity of single neurons. Biophys. J. 2, 351–368 (1962)

    Article  Google Scholar 

  12. Schaub, M.T., Schultz, S.R.: The Ising decoder: reading out the activity of large neural ensembles. Journal of Computational Neuroscience 32(1), 101–118 (2012)

    Article  MathSciNet  Google Scholar 

  13. Schultz, S.R., Kitamura, K., Post-Uiterweer, A., Krupic, J., Hausser, M.: Spatial Pattern Coding of Sensory Information by Climbing Fiber-Evoked Calcium Signals in Networks of Neighboring Cerebellar Purkinje Cells. J. Neurosci. 29(25), 8005–8015 (2009)

    Article  Google Scholar 

  14. Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 279–423, 623–656 (1948)

    Google Scholar 

  15. Strong, S.P., Koberle, R., de Ruyter van Steveninck, R.R., Bialek, W.: Entropy and information in neural spike trains. Physical Review Letters 80, 197–200 (1998)

    Article  Google Scholar 

  16. Victor, J.D.: Binless strategies for estimation of information from neural data. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 66(5), pt. 1, 051903 (2002)

    Google Scholar 

  17. Werner, G., Mountcastle, V.B.: Neural Activity in Mechanoreceptive Cutaneous Afferents: Stimulus-Response Relations, Weber Functions, and Information Transmission. J. Neurophysiol. 28(2), 359–397 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cui, N., Tang, J., Schultz, S.R. (2012). Differential Entropy of Multivariate Neural Spike Trains. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33269-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33269-2_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33268-5

  • Online ISBN: 978-3-642-33269-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics