Skip to main content

Self-Organizing Map and Tree Topology for Graph Summarization

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2012 (ICANN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7553))

Included in the following conference series:

Abstract

In this paper, we present a novel approach called SOM-tree to summarize a given graph into a smaller one by using a new decomposition of original graph. The proposed approach provides simultaneously a topological map and a tree topology of data using self-organizing maps. Unlike other clustering methods, the tree-structure aim to preserve the strengths of connections between graph vertices. The hierarchical nature of the summarization data structure is particularly attractive. Experiments evaluated by Accuracy and Normalized Mutual Information conducted on real data sets demonstrate the good performance of SOM-tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded error. In: SIGMOD Conference, pp. 419–432 (2008)

    Google Scholar 

  2. Toivonen, H., Zhou, F., Hartikainen, A., Hinkka, A.: Compression of weighted graphs. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011, pp. 965–973. ACM, New York (2011)

    Google Scholar 

  3. Azzag, H., Venturini, G., Oliver, A., Guinot, C.: A hierarchical ant based clustering algorithm and its use in three real-world applications. European Journal of Operational Research 179(3), 906–922 (2007)

    Article  MATH  Google Scholar 

  4. Flake, G.W., Lawrence, S., Lee Giles, C.: Efficient identification of web communities. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2000, pp. 150–160. ACM, New York (2000)

    Chapter  Google Scholar 

  5. Ino, H., Kudo, M., Nakamura, A.: Partitioning of web graphs by community topology. In: Proceedings of the 14th International Conference on World Wide Web, WWW 2005, pp. 661–669. ACM, New York (2005)

    Chapter  Google Scholar 

  6. Rossi, F., Villa-Vialaneix, N.: Optimizing an organized modularity measure for topographic graph clustering: A deterministic annealing approach. Neurocomput. 73, 1142–1163 (2010)

    Article  Google Scholar 

  7. Newman, M.E.J.: Modularity and community structure in networks. Proceedings of the National Academy of Sciences 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  8. Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. 38 (June 2006)

    Google Scholar 

  9. Chakrabarti, D., Faloutsos, C., Zhan, Y.: Visualization of large networks with min-cut plots, a-plots and r-mat. Int. J. Hum.-Comput. Stud. 65(5), 434–445 (2007)

    Article  Google Scholar 

  10. Chung, F.R.K.: Spectral Graph Theory (CBMS Regional Conference Series in Mathematics, No. 92). American Mathematical Society (February 1997)

    Google Scholar 

  11. Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17, 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  12. Stanoev, A., Smilkov, D., Kocarev, L.: Identifying communities by influence dynamics in social networks. CoRR, abs/1104.5247 (2011)

    Google Scholar 

  13. Grygorash, O., Zhou, Y., Jorgensen, Z.: Minimum spanning tree based clustering algorithms. In: Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2006, pp. 73–81. IEEE Computer Society, Washington, DC (2006)

    Google Scholar 

  14. Strehl, A., Ghosh, J., Cardie, C.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3, 583–617 (2002)

    Google Scholar 

  15. Auber, D.: Tulip: A huge graph visualisation framework. In: Mutzel, P., Jünger, M. (eds.) Graph Drawing Softwares. Mathematics and Visualization, pp. 105–126. Springer (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doan, NQ., Azzag, H., Lebbah, M. (2012). Self-Organizing Map and Tree Topology for Graph Summarization. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33266-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33266-1_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33265-4

  • Online ISBN: 978-3-642-33266-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics