Advertisement

Self-Organizing Map and Tree Topology for Graph Summarization

  • Nhat-Quang Doan
  • Hanane Azzag
  • Mustapha Lebbah
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7553)

Abstract

In this paper, we present a novel approach called SOM-tree to summarize a given graph into a smaller one by using a new decomposition of original graph. The proposed approach provides simultaneously a topological map and a tree topology of data using self-organizing maps. Unlike other clustering methods, the tree-structure aim to preserve the strengths of connections between graph vertices. The hierarchical nature of the summarization data structure is particularly attractive. Experiments evaluated by Accuracy and Normalized Mutual Information conducted on real data sets demonstrate the good performance of SOM-tree.

Keywords

Self-Organizing Map hierarchical clustering tree topology graph summarization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded error. In: SIGMOD Conference, pp. 419–432 (2008)Google Scholar
  2. 2.
    Toivonen, H., Zhou, F., Hartikainen, A., Hinkka, A.: Compression of weighted graphs. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011, pp. 965–973. ACM, New York (2011)Google Scholar
  3. 3.
    Azzag, H., Venturini, G., Oliver, A., Guinot, C.: A hierarchical ant based clustering algorithm and its use in three real-world applications. European Journal of Operational Research 179(3), 906–922 (2007)CrossRefzbMATHGoogle Scholar
  4. 4.
    Flake, G.W., Lawrence, S., Lee Giles, C.: Efficient identification of web communities. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2000, pp. 150–160. ACM, New York (2000)CrossRefGoogle Scholar
  5. 5.
    Ino, H., Kudo, M., Nakamura, A.: Partitioning of web graphs by community topology. In: Proceedings of the 14th International Conference on World Wide Web, WWW 2005, pp. 661–669. ACM, New York (2005)CrossRefGoogle Scholar
  6. 6.
    Rossi, F., Villa-Vialaneix, N.: Optimizing an organized modularity measure for topographic graph clustering: A deterministic annealing approach. Neurocomput. 73, 1142–1163 (2010)CrossRefGoogle Scholar
  7. 7.
    Newman, M.E.J.: Modularity and community structure in networks. Proceedings of the National Academy of Sciences 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  8. 8.
    Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. 38 (June 2006)Google Scholar
  9. 9.
    Chakrabarti, D., Faloutsos, C., Zhan, Y.: Visualization of large networks with min-cut plots, a-plots and r-mat. Int. J. Hum.-Comput. Stud. 65(5), 434–445 (2007)CrossRefGoogle Scholar
  10. 10.
    Chung, F.R.K.: Spectral Graph Theory (CBMS Regional Conference Series in Mathematics, No. 92). American Mathematical Society (February 1997)Google Scholar
  11. 11.
    Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17, 395–416 (2007)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Stanoev, A., Smilkov, D., Kocarev, L.: Identifying communities by influence dynamics in social networks. CoRR, abs/1104.5247 (2011)Google Scholar
  13. 13.
    Grygorash, O., Zhou, Y., Jorgensen, Z.: Minimum spanning tree based clustering algorithms. In: Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2006, pp. 73–81. IEEE Computer Society, Washington, DC (2006)Google Scholar
  14. 14.
    Strehl, A., Ghosh, J., Cardie, C.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3, 583–617 (2002)Google Scholar
  15. 15.
    Auber, D.: Tulip: A huge graph visualisation framework. In: Mutzel, P., Jünger, M. (eds.) Graph Drawing Softwares. Mathematics and Visualization, pp. 105–126. Springer (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nhat-Quang Doan
    • 1
  • Hanane Azzag
    • 1
  • Mustapha Lebbah
    • 1
  1. 1.Laboratoire d’Informatique de Paris-Nord (LIPN), CNRS (UMR 7030)Université Paris 13, Sorbonne Paris CitéVilletaneuseFrance

Personalised recommendations