Advertisement

A “Learning from Models” Cognitive Fault Diagnosis System

  • Cesare Alippi
  • Manuel Roveri
  • Francesco Trovò
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7553)

Abstract

We present an unsupervised cognitive fault diagnosis framework for nonlinear dynamic systems working in the space of approximating models. The diagnosis system detects and classifies faults by relying on a fault dictionary that is empty at the beginning of the system’s life and is automatically populated as faults occur. Outliers are treated as separate instances until enough confidence is built and either are integrated in existing classes or promoted to a new faults class. Simulation results show the effectiveness of the proposed approach.

Keywords

fault cognitive diagnosis systems evolving clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ljung, L.: Convergence analysis of parametric identification methods. IEEE Transactions on Automatic Control 23(5), 770–783 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ljung, L., Caines, P.E.: Asymptotic normality of prediction error estimators for approximate system models. IEEE Decision and Control 17, 927–932 (1978)Google Scholar
  3. 3.
    Isermann, R.: Fault-diagnosis systems, an introduction from fault detection to fault tolerance. Springer (2006)Google Scholar
  4. 4.
    Fochem, M., Wischnewski, P., Hofmeier, R.: Qualitycontrolsystems on the productionline of tapedeckchassis using selforganizing feature maps. In: Proc. 1st European Symp. on Applications of Intelligent Technologies (1997)Google Scholar
  5. 5.
    Naresh, R., Sharma, V., Vashisthcv, M.: An integrated neural fuzzy approach for fault diagnosis of transformers. IEEE T. Power Del. 23(4), 2017–2024 (2008)CrossRefGoogle Scholar
  6. 6.
    Kuo, H.C., Chang, H.K.: A new symbiotic evolution-based fuzzy-neural approach to fault diagnosis of marine propulsion systems. Engineering Applications of Artificial Intelligence 17, 919–930 (2004)CrossRefGoogle Scholar
  7. 7.
    Joentgen, A., Mikenina, L., Weber, R., Zeugner, A., Zimmermann, H.J.: Automatic fault detection in gearboxes by dynamic fuzzy data analysis. Fuzzy Sets and Systems 105, 123–132 (1999)CrossRefGoogle Scholar
  8. 8.
    Huang, G., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: Theory and applications. Neurocomputing 70(1-3), 489–501 (2006)CrossRefGoogle Scholar
  9. 9.
    Schrauwen, B., Verstraeten, D., Campenhout, J.: An overview of reservoir computing: Theory, applications and implementations. E. S. on Artificial NNs, 471–482 (2007)Google Scholar
  10. 10.
    Nasraoui, O., Rojas, C.: Robust clustering for tracking noisy evolving data streams. In: Proc. SIAM Conf. Data Mining, pp. 618–622 (2006)Google Scholar
  11. 11.
    Song, Q., Kasabov, N.: ECM - A Novel On-line, Evolving Clustering Method and Its Applications. Found. of cognitive science, pp. 631–682. MIT Press (2001)Google Scholar
  12. 12.
    Angelov, P., Filev, D.P., Kasabov, N.: Evolving intelligent systems: Methodology and Applications, vol. 12. Wiley-IEEE Press (2010)Google Scholar
  13. 13.
    Johnson, R.A. and Wichern, D.W.: Applied multivariate statistical analysis. Prentice hall, Upper Saddle River (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Cesare Alippi
    • 1
  • Manuel Roveri
    • 1
  • Francesco Trovò
    • 1
  1. 1.Politecnico di MilanoMilanoItaly

Personalised recommendations