Instance Selection with Neural Networks for Regression Problems

  • Mirosław Kordos
  • Marcin Blachnik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7553)


The paper presents algorithms for instance selection for regression problems based upon the CNN and ENN solutions known for classification tasks. A comparative experimental study is performed on several datasets using multilayer perceptrons and k-NN algorithms with different parameters and their various combinations as the method the selection is based on. Also various similarity thresholds are tested. The obtained results are evaluated taking into account the size of the resulting data set and the regression accuracy obtained with multilayer perceptron as the predictive model and the final recommendation regarding instance selection for regression tasks is presented.


neural network instance selection regression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kordos, M., Blachnik, M., Wieczorek, T.: Temperature Prediction in Electric Arc Furnace with Neural Network Tree. In: Honkela, T. (ed.) ICANN 2011, Part II. LNCS, vol. 6792, pp. 71–78. Springer, Heidelberg (2011)Google Scholar
  2. 2.
    Hart, P.E.: The condensed nearest neighbor rule. IEEE Transactions on Information Theory 14, 515–516 (1968)CrossRefGoogle Scholar
  3. 3.
    Wilson, D.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics 2, 408–421 (1972)CrossRefzbMATHGoogle Scholar
  4. 4.
    Jankowski, N., Grochowski, M.: Comparison of Instances Seletion Algorithms I. Algorithms Survey. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 598–603. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Kuncheva, L., Bezdek, J.C.: Presupervised and postsupervised prototype classifier design. IEEE Transactions on Neural Networks 10, 1142–1152 (1999)CrossRefGoogle Scholar
  6. 6.
    Wilson, D.R., Martinez, D., Reduction, T.: techniques for instance-based learning algorithms. Machine Learning 38, 251–268 (2000)CrossRefGoogle Scholar
  7. 7.
    Salvador, G., Derrac, J., Ramon, C.: Prototype Selection for Nearest Neighbor Classification: Taxonomy and Empirical Study. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 417–435 (2012)CrossRefGoogle Scholar
  8. 8.
    Kovahi, R., John, G.: Wrappers for Feature Subset Selection. AIJ special issue on relevance (May 1997)Google Scholar
  9. 9.
    Zhang, J., et al.: Intelligent selection of instances for prediction functions in lazy learning algorithms. Artifcial Intelligence Review 11, 175–191 (1997)CrossRefGoogle Scholar
  10. 10.
    Tolvi, J.: Genetic algorithms for outlier detection and variable selection in linear regression models. Soft Computing 8, 527–533 (2004)CrossRefzbMATHGoogle Scholar
  11. 11.
    Guillen, A., et al.: Applying Mutual Information for Prototype or Instance Selection in Regression Problems. In: ESANN 2009 Proceedings (2009)Google Scholar
  12. 12.
    Tomek, I.: An experiment with the edited nearest-neighbor rule. IEEE Transactions on Systems, Man, and Cybernetics 6, 448–452 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Kordos, M., Blachnik, M., Strzempa, D.: Do We Need Whatever More Than k-NN? In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS (LNAI), vol. 6113, pp. 414–421. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Merz, C., Murphy, P.: UCI repository of machine learning databases (1998-2012),
  15. 15.
  16. 16.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mirosław Kordos
    • 1
  • Marcin Blachnik
    • 2
  1. 1.Department of Mathematics and Computer ScienceUniversity of Bielsko-BialaBielsko-BiałaPoland
  2. 2.Department of Management and InformaticsSilesian University of TechnologyKatowicePoland

Personalised recommendations