An Efficient Way of Combining SVMs for Handwritten Digit Recognition

  • Renata F. P. Neves
  • Cleber Zanchettin
  • Alberto N. G. Lopes Filho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7553)


This paper presents a method of combining SVMs (support vector machines) for multiclass problems that ensures a high recognition rate and a short processing time when compared to other classifiers. This hierarchical SVM combination considers the high recognition rate and short processing time as evaluation criteria. The used case study was the handwritten digit recognition problem with promising results.


pattern recognition handwriting digit classifier support vector machine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall Pearson Education Inc. (2003)Google Scholar
  2. 2.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley–Intersciance (2001)Google Scholar
  3. 3.
    Plötz, T., Fink, G.A.: Markov models for offline handwritting recognition: a survey. International Journal on Document Analysis and Recognition 12(4), 269–298 (2009)CrossRefGoogle Scholar
  4. 4.
    NIST Special Database 19. Handprinted Forms and Characters Database,
  5. 5.
    Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall (1999)Google Scholar
  6. 6.
    Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, New York (1998)zbMATHGoogle Scholar
  7. 7.
    Zanchettin, C., Bezerra, B.L.D., Azevedo, W.W.: A KNN-SVM Hybrid Model for Cursive Handwriting Recognition. In: IEEE Int. Joint Con. on Neural Networks, Birsbane (2012)Google Scholar
  8. 8.
    Neves, R.F.P., Lopes-Filho, A.N.G., Mello, C.A.B., Zanchettin, C.: A SVM Based Off-Line Handwritten Digit Recognizer. In: IEEE International Conference on Systems, Man, and Cybernetics, vol. 1, pp. 510–515 (October 2011)Google Scholar
  9. 9.
    Bellili, A., Gilloux, M., Gallinari, P.: An MLP-SVM combination architecture for offline handwritten digit recognition. Reduction of recognition errors by Support Vector Machines rejection mechanisms. International Journal on Document Analysis and Recognition 5, 244–252 (2004)Google Scholar
  10. 10.
    Bhowmik, T.K., Ghanty, P., Roy, A., Parui, S.K.: SVM-based hierarchal architectures for handwritten Bangla character recognition. International Journal on Document Analysis and Recognition 12, 97–108 (2009)CrossRefGoogle Scholar
  11. 11.
    Parsiavash, H., Mehran, R., Razzazi, F.: A robust free size OCR for omni-font Persian/Arabic document using combined MLP/SVM. In: Proceedings of Iberoamerican Congress on Pattern Recognition, pp. 601–610 (2005)Google Scholar
  12. 12.
    Camastra, F.: A SVM-based cursive character recognizer. Pattern Recognition 40, 3721–3727 (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Hsu, C.W., Lin, C.J.: A Comparison of Methods for Multiclass Support Vector Machines. IEEE Transactions on Neural Networks 13(2), 415–425 (2002)CrossRefGoogle Scholar
  14. 14.
    Parker, J.R.: Algorithms for Image Processing and Computer Vision. John Wiley and Sons (1997)Google Scholar
  15. 15.
    Gonzalez, R., Woods, C., Richard, E.: Digital Image Processing. Addison-Wesley (1992)Google Scholar
  16. 16.
    Mathworks MatlabTM – The language of technical computing,
  17. 17.
    Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep, big, simple neural nets for handwritten digit recognition. Neural Computation 22, 3207–3220 (2010)CrossRefGoogle Scholar
  18. 18.
    Camastra, F.: A SVM-based cursive character recognizer. Pattern Recognition 40, 3721–3727 (2007)CrossRefzbMATHGoogle Scholar
  19. 19.
    Zhang, P., Bui, T.D., Suen, C.Y.: A novel cascade ensemble classifier system with a high recognition performance on handwritten digits. Pattern Recognition 40, 3415–3429 (2007)CrossRefzbMATHGoogle Scholar
  20. 20.
    Vamvakas, G., Gatos, B., Perantonis, S.J.: Handwritten character recognition through two-stage foreground sub-sampling. Pattern Recognition (43), 2807–2816 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Renata F. P. Neves
    • 1
  • Cleber Zanchettin
    • 1
  • Alberto N. G. Lopes Filho
    • 1
  1. 1.Center of InformaticsFederal University of PernambucoRecifeBrazil

Personalised recommendations