New Dynamic Classifiers Selection Approach for Handwritten Recognition

  • Nabiha Azizi
  • Nadir Farah
  • Abdel Ennaji
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7553)


In this paper a new approach based on dynamic selection of ensembles of classifiers is discussed to improve handwritten recognition system. For pattern classification, dynamic ensemble learning methods explore the use of different classifiers for different samples, therefore, may get better generalization ability than static ensemble learning methods. Our proposed DECS-LR algorithm (Dynamic Ensemble of Classifiers Selection by Local Reliability) enriched the selection criterion by incorporating a new Local-Reliability measure and chooses the most confident ensemble of classifiers to label each test sample dynamically. Confidence level is estimated by proposed reliability measure using confusion matrix constructed during training level. After validation with voting and weighted voting fusion methods, ten different classifiers and three benchmarks, we show experimentally that choosing classifiers ensemble dynamically taking into account the proposed L-Reliability measure leads to increase recognition rate for Handwritten recognition system using three benchmarks.


Multiple classifier system Dynamic classifier selection Local accuracy estimation Classifiers fusion Handwritten recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Govindaraju, V., Krishnamurthy, R.K.: Holistic handwritten word recognition using temporal features derived from off-line images. Pattern Recognition Letters 17(5), 537–540 (1996)CrossRefGoogle Scholar
  2. 2.
    Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–238 (1998)CrossRefGoogle Scholar
  3. 3.
    Kuncheva, L.I., Whitaker, C.S.C., Duin, R.P.W.: Is independence good for combining classiers. In: Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, Spain, pp. 168–171 (2000)Google Scholar
  4. 4.
    Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1991)MathSciNetGoogle Scholar
  5. 5.
    Azizi, N., Farah, N., Khadir, M., Sellami, M.: Arabic Handwritten Word Recognitionv Using Classifiers Selection and features Extraction / Selection. In: 17 th IEEE Conference in Intelligent Information System, IIS 2009, Poland, pp. 735–742 (2009)Google Scholar
  6. 6.
    Azizi, N., Farah, N., Sellami, M., Ennaji, A.: Using Diversity in Classifier Set Selection for Arabic Handwritten Recognition. In: El Gayar, N., Kittler, J., Roli, F. (eds.) MCS 2010. LNCS, vol. 5997, pp. 235–244. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Woods, K., Kegelmeyer, W.P., Bowyer, K.: Combination of multiple classifiers using local accuracy estimates, IEEE Trans. Pattern Anal. Mach. Intell. 19(4), 405–410 (1997)CrossRefGoogle Scholar
  8. 8.
    Azizi, N., Farah, N., Sellami, M.: Off-line handwritten word recognition using ensemble of classifier selection and features fusion. Journal of Theoretical and Applied Information Technology, JATIT 14(2), 141–150 (2010)Google Scholar
  9. 9.
    Azizi, N., Farah, N., Sellami, M.: Ensemble classifier construction for Arabic handwritten recognition. In: The 7th IEEE International Workshop in Signal Processing and Sustems, WOSSPA 2011, Tipaza, Algeria, May 8-10 (2011)Google Scholar
  10. 10.
    Azizi, N., Farah, N., Sellami, M.: Progressive Algorithm for Classifier Ensemble Construction Based on Diversity in Overproduce and Select Paradigm: Application to the Arabic handwritten Recognition. In: The 2nd ICICS 2011, Jordan, May 22-24, pp. 27–33 (2011)Google Scholar
  11. 11.
    Farah, N., Souici, L., Sellami, M.: Classifiers combination and syntax analysis for arabic literal amount recognition. Engineering Applications of Artificial Intelligence 19(1) (2006)Google Scholar
  12. 12.
    Dos Santos, E.M., Sabourin, R., Maupin, P.: A dynamic overproduce-and-choose strategy for the selection of classiffier ensembles. Pattern Recognition 41, 2993–3009 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Singh, F., Singh, M.A.: dynamic classifier selection and combination approach to image region labelling, Signal Process. In: Image Commun., vol. 20, pp. 219–231 (2005)Google Scholar
  14. 14.
    Woloszynski, T., Kurzynski, M.: A Measure of Competence Based on Randomized Reference Classifier for Dynamic Ensemble Selection. In: ICPR 2010, Turkey, August 23-26, pp. 4194–4198 (2010)Google Scholar
  15. 15.
    Pechwitz, M., Maergner, V.: Baseline estimation for arabic handwritten words. In: Frontiers in Handwriting Recognition, pp. 479–484 (2002)Google Scholar
  16. 16.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nabiha Azizi
    • 1
  • Nadir Farah
    • 1
  • Abdel Ennaji
    • 2
  1. 1.Labged Laboratory: Laboratoire de Gestion électronique de documents, Departement d’informatiqueUniversité Badji MokhtarAnnabaAlgeria
  2. 2.Litis Laboratory, Laboratoire d’Informatique, du Traitement de l’Information et des Systèmes (LITIS)Rouen UniversityFrance

Personalised recommendations