Advertisement

An Investigation of Ensemble Systems Applied to Encrypted and Cancellable Biometric Data

  • Isaac de L. Oliveira Filho
  • Benjamn R. C. Bedregal
  • Anne M. P. Canuto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7553)

Abstract

In this paper, we propose the simultaneous use of cryptography and transformation functions in biometric-based identification systems aiming to increase the security level of biometric data as well as the performance of these systems. Additionally, we aim to keep a reasonable efficiency level of these data through the use of more elaborated classification structures, such as ensemble systems. With this proposal, we intend to have a robust and secure identification system using signature data.

Keywords

Ensemble systems Cryptosystem Cancellable biometric data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akgün, M., Kavak, P., Demirci, H.: New Results on the Key Scheduling Algorithm of RC4. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 40–52. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Araujo, F.S., Ramos, K.D., Bedregal, B.R., Silva, I.: Paplio cryptography algorithm. In: International Symposium on Computational and Information Sciences (2004)Google Scholar
  3. 3.
    Bringera, J., Chabanne, H., Kindarji, B.: The best of both worlds: Applying secure sketches to cancellable biometrics. Science of Computer Programming 74(1-2), 43–51 (2008)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Canuto, A.M., Fairhurst, M.C., Pintro, F., Junior, J.C.X., Neto, A.F., Gonalves, L.M.G.: Classifier ensembles and optimization techniques to improve the performance of cancellable fingerprint. Int. J. of Hybrid Intelligent Systems 8(3), 143–154 (2011)Google Scholar
  5. 5.
    Freire-Santos, M., Fierrez-Aguilar, J., Ortega-Garcia, J.: Cryptographic key generation using handwritten signature. In: Biometric Technology for Human Identification III. SPIE, Int. Society for Optical Engineering, United States (2006)Google Scholar
  6. 6.
    Guest, R.: The repeatability of signatures. In: The 9th Int. Workshop on Frontiers in Handwriting Recognition, IWFHR 2004, pp. 492–497 (2004)Google Scholar
  7. 7.
    Jain, A.K., Nandakumar, K., Nagar, A.: Biometric template security. Eurasip Journal on Advance in Signal Processing (2008)Google Scholar
  8. 8.
    Jin, A.T.B., Hui, L.M.: Cancelable biometrics. Scholarpedia (2010)Google Scholar
  9. 9.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard (2002)Google Scholar
  10. 10.
    Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley (2004)Google Scholar
  11. 11.
    Maiorana, E., Martinez-Diaz, M., Campisi, P., Ortega-Garcia, J., Neri, A.: Template protection for hmm-based on-line signature authentication. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW, pp. 1–6 (2008)Google Scholar
  12. 12.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Vielhauer, C., Steinmetz, R., Mayerhofer, A.: Biometric hash based on statistical features of online signatures. In: Proceedings of 16th International Conference on Pattern Recognition, vol. 1, pp. 123–126 (2002)Google Scholar
  14. 14.
    Witten, I.H., Frank, E.: Data Mining: Pratical Machine Learning Tools and Techiniques, 2nd edn. Elsevier (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Isaac de L. Oliveira Filho
    • 1
  • Benjamn R. C. Bedregal
    • 1
  • Anne M. P. Canuto
    • 1
  1. 1.Department of Informatics and Applied MathematicsFederal University of RNNatalBrazil

Personalised recommendations