Construction of Emerging Markets Exchange Traded Funds Using Multiobjective Particle Swarm Optimisation

  • Marta Díez-Fernández
  • Sergio Alvarez Teleña
  • Denise Gorse
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7553)


Multiobjective particle swarm optimisation (MOPSO) techniques are used to implement a new Andean stock index as an exchange traded fund (ETF) with weightings adjusted to allow for a tradeoff between the minimisation of tracking error, and liquidity enhancement by the reduction of transaction costs and market impact. Solutions obtained by vector evaluated PSO (VEPSO) are compared with those obtained by the quantum-behaved version of this algorithm (VEQPSO) and it is found the best strategy for a portfolio manager would be to use a hybrid front with contributions from both versions of the MOPSO algorithm.


Multiobjective optimisation particle swarm optimisation portfolio management emerging markets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: IEEE International Conference Symposium on Neural Networks, pp. 1942–1948. IEEE Press, New York (1995)Google Scholar
  2. 2.
    Poli, R.: An Analysis of Publications on Particle Swarm Optimisation Application. Technical report, Department of Computer Science, University of Essex (2007)Google Scholar
  3. 3.
    Mishra, K.S., Panda, G., Meher, S.: Multi-objective Particle Swarm Optimization Approach to Portfolio Optimization. In: 2009 World Congress on Nature and Biologically Inspired Computing, pp. 1611–1614. IEEE Press, New York (2009)Google Scholar
  4. 4.
    Briza, A.C., Naval Jr., P.C.: Stock Trading System Based on the Multi-objective Particle Swarm Optimization of Technical Indicators on End-of-Day Market Data. Applied Soft Computing 11, 1191–1201 (2011)CrossRefGoogle Scholar
  5. 5.
    Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimization Method in Multiobjective Problems. In: 2002 ACM Symposium on Applied Computing, pp. 603–607. ACM Press (2002)Google Scholar
  6. 6.
    Omkar, S.N., Khandelwal, R., Ananth, T.V.S., Naik, G.N., Gopalakrishnan, S.: Quantum Behaved Particle Swarm Optimization (QPSO) for Multi-objective Design Optimization of Composite Structures. Expert Systems with Applications 36, 11312–11322 (2009)CrossRefGoogle Scholar
  7. 7.
    Sun, J., Xu, W., Feng, B.: A Global Search Strategy of Quantum-Behaved Particle Swarm Optimization. In: 2004 IEEE Conference on Cybernetics and Intelligent Systems, pp. 111–116. IEEE Press, New York (2004)Google Scholar
  8. 8.
    Benne, N., Fonseca, M., López-Ibáñez, M., Paquete, L., Vahrenhold, J.: On the Complexity of Computing the Hypervolume Indicator. IEEE Transactions on Evolutionary Computation 13, 1075–1082 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marta Díez-Fernández
    • 1
  • Sergio Alvarez Teleña
    • 1
  • Denise Gorse
    • 1
  1. 1.Dept of Computer ScienceUniversity College LondonLondonUK

Personalised recommendations