A Computational Geometry Approach for Pareto-Optimal Selection of Neural Networks

  • Luiz C. B. Torres
  • Cristiano L. Castro
  • Antônio P. Braga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7553)


This paper presents a Pareto-optimal selection strategy for multiobjective learning that is based on the geometry of the separation margin between classes. The Gabriel Graph, a method borrowed from Computational Geometry, is constructed in order to obtain margin patterns and class borders. From border edges, a target separator is obtained in order to obtain a large margin classifier. The selected model from the generated Pareto-set is the one that is closer to the target separator. The method presents robustness in both synthetic and real benchmark datasets. It is efficient for Pareto-Optimal selection of neural networks and no claim is made that the obtained solution is equivalent to a maximum margin separator.


decision-making multiobjective machine learning gabriel graph classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vapnik, V.: Statistical Learning Theory. Wiley-Interscience (1998)Google Scholar
  2. 2.
    Teixeira, R.A., Braga, A.P., Saldanha, R.R., Takahashi, R.H.C., Medeiros, T.H.: The Usage of Golden Section in Calculating the Efficient Solution in Artificial Neural Networks Training by Multi-objective Optimization. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 289–298. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Jin, Y., Sendhoff, B.: Pareto-Based Multiobjective Machine Learning: An Overview and Case Studies. IEEE Transactions on Systems Science and Cybernetics 39, 373 (2009)CrossRefGoogle Scholar
  4. 4.
    Teixeira, R.A., Braga, A.P., Takahashi, R.H.C.: Improving generalization of mlps with multi-objective optimization. Neurocomputing 35, 189–194 (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    Costa, M.A., Braga, A.P., Menezes, B.R.: Improving generalization of MLPS witch multi-objective witch sliding mode control and the Levenberg-Maquardt algorithm. Neurocomputing 70, 1342–1347 (2007)CrossRefGoogle Scholar
  6. 6.
    Kokshenev, I., Braga, A.P.: An efficient multi-objective learning algorithm for RBF neural network. Neurocomputing 37, 2799–2808 (2010)CrossRefGoogle Scholar
  7. 7.
    Medeiros, T.H., Takahashi, H.C.R., Braga, A.: A Incorporação do Conhecimento Prévio na Tomada de Decisão do Aprendizado Multiobjetivo Congresso Brasileiro de Redes Neurais - Inteligência Computacional 9, 25–28 (2009)Google Scholar
  8. 8.
    Berg, M., Kreveld, M.V., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer (2000)Google Scholar
  9. 9.
    Gestel, T., Suykens, J.A.K., Baesens, B., Viaene, S., Vanthienen, J., Dedene, G., De Moor, B., Vandewalle, J.: Benchmarking least squares support vector machine classifiers. Machine Learning 54, 5–32 (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of multiobjective optimization, vol. 176. Elsevier Science  (1985)Google Scholar
  11. 11.
    Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)zbMATHGoogle Scholar
  12. 12.
    Bartlett, P.L.: For valid generalization, the size of the weights is more important than the size of the network. In: Advances in Neural Information Processing Systems, pp. 134–140. Morgan Kaufmann Publishers (1997)Google Scholar
  13. 13.
    Lawson, C.L., Hanson, R.J.: Solving least squares problems. Society for Industrial Mathematics 15 (1995)Google Scholar
  14. 14.
    Sánchez, J., Pla, F., Ferri, F.: Prototype selection for the nearest neighbour rule through proximity graphs. Pattern Recognition Letters 18(6), 507–513 (1997)CrossRefGoogle Scholar
  15. 15.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011) software,

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luiz C. B. Torres
    • 1
  • Cristiano L. Castro
    • 1
  • Antônio P. Braga
    • 1
  1. 1.Department of Electronics EngineeringFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations