Advertisement

TinkerLamp 2.0: Designing and Evaluating Orchestration Technologies for the Classroom

  • Son Do-Lenh
  • Patrick Jermann
  • Amanda Legge
  • Guillaume Zufferey
  • Pierre Dillenbourg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7563)

Abstract

Orchestration refers to the real-time classroom management of multiple activities and multiple constraints conducted by teachers. Orchestration emphasizes the classroom constraints, integrative scenarios, and the role of teachers in managing these technology-enhanced classrooms. Supporting orchestration is becoming increasingly important due to the many factors and activities involved in the classroom. This paper presents the design and evaluation of TinkerLamp 2.0, a tangible tabletop learning environment that was explicitly designed to support classroom orchestration. Our study suggested that supporting orchestration facilitates teachers’ work and leads to improvements in both the classroom atmosphere and learning outcomes.

Keywords

Tangible Interface Class Awareness Awareness Tool Classroom Atmosphere Warehouse Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    AlAgha, I., Hatch, A., Ma, L., Burd, L.: Towards a teacher-centric approach for multi-touch surfaces in classrooms. In: ACM ITS 2010, pp. 187–196 (2010)Google Scholar
  2. 2.
    Alavi, H., Dillenbourg, P., Kaplan, F.: Distributed Awareness for Class Orchestration. In: Cress, U., Dimitrova, V., Specht, M. (eds.) EC-TEL 2009. LNCS, vol. 5794, pp. 211–225. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Alcoholado, C., Nussbaum, M., Tagle, A., Gomez, F., Denardin, F., Susaeta, H., Villalta, M., Toyama, K.: One mouse per child: interpersonal computer for individual arithmetic practice. Journal of Computer Assisted Learning (2011)Google Scholar
  4. 4.
    Bruner, J.S.: Toward a Theory of Instruction. Belknap Press, Cambridge (1966)Google Scholar
  5. 5.
    de Jong, T.: The design of effective simulation-based inquiry learning environments. In: Proc of Conf. on Learning by Effective Utilization of Technologies: Facilitating Intercultural Understanding, pp. 3–6 (2006)Google Scholar
  6. 6.
    DiGiano, C., Patton, C.: Orchestrating handhelds in the classroom with SRI’s ClassSync. In: Proc. of CSCL, pp. 706–707 (2002)Google Scholar
  7. 7.
    Dillenbourg, P., Jarvela, S., Fischer, F.: The evolution of research on computer-supported collaborative learning. In: Technology-Enhanced Learning, pp. 3–19 (2009)Google Scholar
  8. 8.
    Dillenbourg, P., Jermann, P.: Technology for Classroom Orchestration. In: Khine, M.S., Saleh, I.M. (eds.) New Science of Learning, pp. 525–552. Springer Science+Business Media, New York (2010)CrossRefGoogle Scholar
  9. 9.
    Dillenbourg, P., Zufferey, G., Alavi, H.S., Jermann, P., Do-Lenh, S., Bonnard, Q., Cuendet, S., Kaplan, F.: Classroom orchestration: The third circle of usability. In: Proc. of CSCL, vol. 1, pp. 510–517 (2011)Google Scholar
  10. 10.
    Do-Lenh, S., Jermann, P., Cuendet, S., Zufferey, G., Dillenbourg, P.: Task Performance vs. Learning Outcomes: A Study of a Tangible User Interface in the Classroom. In: Wolpers, M., Kirschner, P.A., Scheffel, M., Lindstaedt, S., Dimitrova, V. (eds.) EC-TEL 2010. LNCS, vol. 6383, pp. 78–92. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Horn, M.S., Solovey, E.T., Crouser, R.J., Jacob, R.J.: Comparing the use of tangible and graphical programming languages for informal science education. In: CHI 2009, pp. 975–984. ACM, New York (2009)Google Scholar
  12. 12.
    Hornecker, E., Buur, J.: Getting a grip on tangible interaction: a framework on physical space and social interaction. In: CHI 2006, pp. 437–446 (2006)Google Scholar
  13. 13.
    Hornecker, E., Marshall, P., Dalton, N.S., Rogers, Y.: Collaboration, interference: awareness with mice or touch input. In: CSCW 2008: Proc. of the ACM Conf. on Computer Supported Cooperative Work, pp. 167–176 (2008)Google Scholar
  14. 14.
    Jermann, P., Zufferey, G., Dillenbourg, P.: Tinkering or Sketching: Apprentices’ Use of Tangibles and Drawings to Solve Design Problems. In: Dillenbourg, P., Specht, M. (eds.) EC-TEL 2008. LNCS, vol. 5192, pp. 167–178. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Kollar, I., Wecker, C., Langer, S., Fischer, F.: Orchestrating web-based collaborative inquiry learning with small group and classroom scripts. In: TEI 2009: Proc. of the 3rd Int. Conf. on Tangible and Embedded Interaction, pp. 77–84 (2011)Google Scholar
  16. 16.
    Moraveji, N., Kim, T., Ge, J., Pawar, U.S., Mulcahy, K., Inkpen, K.: Mischief: supporting remote teaching in developing regions. In: CHI, pp. 353–362. ACM (2008)Google Scholar
  17. 17.
    Moraveji, N., Morris, M., Morris, D., Czerwinski, M., Henry Riche, N.: Classsearch: facilitating the development of web search skills through social learning. In: CHI, pp. 1797–1806. ACM, New York (2011)Google Scholar
  18. 18.
    Mulholland, P., Anastopoulou, S., Collins, T., Feisst, M., Gaved, M., Kerawalla, L., Paxton, M., Scanlon, E., Sharples, M., Wright, M.: nquire: Technological support for personal inquiry learning. IEEE Transactions on Learning Technologies (2011)Google Scholar
  19. 19.
    Piaget, J.: The future of developmental child psychology. Journal of Youth and Adolescence 3, 87–93 (1974)CrossRefGoogle Scholar
  20. 20.
    Price, S., Falcao, T.P., Sheridan, J.G., Roussos, G.: The effect of representation location on interaction in a tangible learning environment. In: Proc. of TEI, pp. 85–92. ACM, New York (2009)CrossRefGoogle Scholar
  21. 21.
    Price, S., Rogers, Y.: Let’s get physical: the learning benefits of interacting in digitally augmented physical spaces. Comput. Educ. 43(1-2), 137–151 (2004)CrossRefGoogle Scholar
  22. 22.
    Prieto, L.P., Villagrá-Sobrino, S., Jorrín-Abellán, I.M., Martínez-Monés, A., Dimitriadis, Y.: Recurrent routines: Analyzing and supporting orchestration in technology-enhanced primary classrooms. Comput. Educ. 57, 1214–1227 (2011)CrossRefGoogle Scholar
  23. 23.
    Roschelle, J., Rafanan, K., Estrella, G., Nussbaum, M., Claro, S.: From handheld collaborative tool to effective classroom module: Embedding cscl in a broader design framework. Computers & Education 55(3), 1018–1026 (2010)CrossRefGoogle Scholar
  24. 24.
    Schneider, B., Jermann, P., Zufferey, G., Dillenbourg, P.: Benefits of a tangible interface for collaborative learning and interaction. IEEE Transactions on Learning Technologies 4(3), 222–232 (2011)CrossRefGoogle Scholar
  25. 25.
    Stanton, D., Neale, H., Bayon, V.: Interfaces to support children’s co-present collaboration: multiple mice and tangible technologies. In: CSCL 2002: Conf. on Computer Support Collaborative Learning, pp. 342–351 (2002)Google Scholar
  26. 26.
    Tomlinson, C.: The differentiated classroom: responding to the needs of all learners. Association for Supervision and Curriculum Development (1999)Google Scholar
  27. 27.
    Zuckerman, O., Arida, S., Resnick, M.: Extending tangible interfaces for education: digital montessori-inspired manipulatives. In: CHI 2005, pp. 859–868 (2005)Google Scholar
  28. 28.
    Zufferey, G., Jermann, P., Do-Lenh, S., Dillenbourg, P.: Using augmentations as bridges from concrete to abstract representations. In: BCS HCI 2009, pp. 130–139 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Son Do-Lenh
    • 1
  • Patrick Jermann
    • 1
  • Amanda Legge
    • 1
  • Guillaume Zufferey
    • 1
  • Pierre Dillenbourg
    • 1
  1. 1.CRAFTEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations