Critical Privacy Factors of Internet of Things Services: An Empirical Investigation with Domain Experts

  • Tobias Kowatsch
  • Wolfgang Maass
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 129)


Internet of Things (IOT) services provide new security and privacy challenges in our everyday life. But no empirical instrument has been developed for the class of IOT services that identifies privacy factors that predict usage intentions and individuals’ willingness to provide personal information. The contribution of this paper is to address this lack of research. The proposed research model integrates the Extended Privacy Calculus Model and the Technology Acceptance Model and is pre-tested with 30 IOT experts. Results indicate that intentions to use IOT services are influenced by various factors such as perceived privacy risks and personal interest. It is further assumed that factors such as legislation, data security or transparency of information use influence the adoption of IOT services. Accordingly, further research must focus on a better understanding of these factors to increase the adoption of both useful and secure IOT services.


Privacy Security Internet of Things Extended Privacy Calculus Model Technology Adoption Model Empirical Study 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ajzen, I.: The theory of planned behavior. Organizational Behavior and Human Decision Processes 50(2), 179–211 (1991)CrossRefGoogle Scholar
  2. 2.
    Ajzen, I., Fishbein, M.: Understanding Attitudes and Predicting Social Behaviour. Prentice Hall, Inglewood Cliffs (1980)Google Scholar
  3. 3.
    Awad, N.F., Krishnan, M.S.: The personalization Privacy Paradox: An Empirical Evaluation of Information Transparency and the Willingness to be Profiled Online for Personalization. MIS Quarterly 30(1), 13–28 (2006)Google Scholar
  4. 4.
    Barclay, D., Thompson, R., Higgins, C.: The partial least squares (PLS) approach to causal modeling: Personal computer adoption and use an illustration. Technology Studies 2(2), 285–309 (1995)Google Scholar
  5. 5.
    Bélanger, F., Crossler, R.E.: Privacy in the Digital Age: A Review of Information Privacy Research in Information Systems. MIS Quarterly 35(4), 1017–1041 (2011)Google Scholar
  6. 6.
    Chin, W.W.: Issues and Opinion on Structural Equation Modeling. MIS Quarterly 22(1), vii–xvi (1998)Google Scholar
  7. 7.
    Davis, F.D.: Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly 13(3), 319–339 (1989)CrossRefGoogle Scholar
  8. 8.
    Davis, F.D., Venkatesh, V.: Toward preprototype user acceptance testing of new information systems: Implications for software project management. IEEE Trans. on Engineering Management 51(1), 31–46 (2004)CrossRefGoogle Scholar
  9. 9.
    Dhillon, G., Torkzadeh, G.: Value-focused assessment of information system security in organizations. Information Systems Journal 16(3), 293–314 (2006)CrossRefGoogle Scholar
  10. 10.
    Dinev, T., Hart, P.: An Extended Privacy Calculus Model for E-Commerce Transactions. Information Systems Research 17(1), 61–80 (2006)CrossRefGoogle Scholar
  11. 11.
    Gefen, D., Straub, D., Boudreau, M.-C.: Structural Equation Modeling Techniques and Regression: Guidelines for Research Practice. Communications of the Association for Information Systems 7(7), 1–78 (2000)Google Scholar
  12. 12.
    Janzen, S., Kowatsch, T., Maass, W.: A Methodology for Content-Centered Design of Ambient Environments. In: Winter, R., Zhao, J.L., Aier, S. (eds.) DESRIST 2010. LNCS, vol. 6105, pp. 210–225. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Kamis, A., Koufaris, M., Stern, T.: Using an Attribute-Based Decision Support System for User-Customized Products Online: An Experimental Investigation. MIS Quarterly 32(1), 159–177 (2008)Google Scholar
  14. 14.
    Komiak, S.Y.X., Benbasat, I.: The Effects of Personalization and Familiarity on Trust and Adoption of Recommendation Agents. MIS Quarterly 30(4), 941–960 (2006)Google Scholar
  15. 15.
    Kowatsch, T., Maass, W., Weber, R., Weber, R.: The Internet of Things Initiative (IOT-I) Deliverable 2.2: Initial Social Acceptance and Impact Evaluation, FP7 ICT project, contract number: 257565 (2011)Google Scholar
  16. 16.
    Laufer, R.S., Wolfe, M.: Privacy as a concept and a social issue: A multidimensional developmental theory. J. Soc. Issues 33(3), 22–42 (1977)CrossRefGoogle Scholar
  17. 17.
    Moore, G.C., Benbasat, I.: Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research 2(3), 192–222 (1991)CrossRefGoogle Scholar
  18. 18.
    Nunnally, J.C.: Psychometric Theory. McGraw-Hill, New York (1967)Google Scholar
  19. 19.
    Presser, M., Krco, S.: The Internet of Things Initiative (IOT-I) Deliverable 2.1: Initial report on IoT applications of strategic interest, FP7 ICT project, contract number: 257565 (2011)Google Scholar
  20. 20.
    Rust, R.T., Kannan, P.K., Peng, N.: The Customer Economics of Internet Privacy. Journal of the Academy of Marketing Science 30(4), 455–464 (2002)CrossRefGoogle Scholar
  21. 21.
    Siponen, M.T., Iivari, J.: IS Security Design Theory Framework and Six Approaches to the Application of IS Security Policies and Guidelines. Journal of the Association for Information Systems 7(7), 445–472 (2006)Google Scholar
  22. 22.
    Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: Toward a unified view. MIS Quarterly 27(3), 425–478 (2003)Google Scholar
  23. 23.
    Weber, R.: Internet of Things - New security and privacy challenges. Computer Law & Security 23(1), 23–30 (2010)CrossRefGoogle Scholar
  24. 24.
    Wixom, B.H., Todd, P.A.: A Theoretical Integration of User Satisfaction and Technology Acceptance. Information Systems Research 16(1), 85–102 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tobias Kowatsch
    • 1
  • Wolfgang Maass
    • 2
  1. 1.Institute of Technology ManagementUniversity of St.GallenSt.GallenSwitzerland
  2. 2.Information and Service Systems, Department of Law and EconomicsSaarland UniversitySaarbrckenGermany

Personalised recommendations