Using Self Organizing Maps to Analyze Demographics and Swing State Voting in the 2008 U.S. Presidential Election

  • Paul T. Pearson
  • Cameron I. Cooper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7477)


Emergent self-organizing maps (ESOMs) and k-means clustering are used to cluster counties in each of the states of Florida, Pennsylvania, and Ohio by demographic data from the 2010 United States census. The counties in these clusters are then analyzed for how they voted in the 2008 U.S. Presidential election, and political strategies are discussed that target demographically similar geographical regions based on ESOM results. The ESOM and k-means clusterings are compared and found to be dissimilar by the variation of information distance function.


Kohonen self organizing map k-means clustering variation of information United States election 2008 United States Census data 2010 


  1. 1.
    2012 Presidential Election Interactive Map and History of the Electoral College, (retrieved May 5, 2012)
  2. 2.
    Ansolabehere, S., Persily, N., Stewart, C.: Race, Region, and Vote Choice in the 2008 Election: Implications for the Future of the Voting Rights Act. Harvard Law Review 123 (2010); Columbia Public Law Research Paper No. 09-211; MIT Political Science Department Research Paper No. 2011-1. Available at SSRN: (retrieved May 1, 2012)
  3. 3.
    CNN. County Results - Election Center 2008 - Elections & Politics from, May 1, 2012)
  4. 4.
    Cooper, C., Burns, A.: Kohonen Self-Organizing Feature Maps as a Means to Benchmark College and University Websites. Journal of Science Education and Technology 16(3), 203–211 (2007)CrossRefGoogle Scholar
  5. 5.
    Frey, W.: Battling Battlegrounds. American Demographics (September 24–26, 2004)Google Scholar
  6. 6.
    Gelman, A., Kenworthy, L., Su, Y.: Income Inequality and Partisan Voting in the United States. Social Science Quarterly, Special Issue: Inequality and Poverty: American and International Perspectives 91(5), 1203–1219 (2010)Google Scholar
  7. 7.
    Gimpel, J., Dyck, J., Shaw, D.: Registrants, Voters, and Turnout Variability Across Neighborhoods. Political Behavior 26(4), 343–375 (2004)CrossRefGoogle Scholar
  8. 8.
    Hartigan, J.: Clustering Algorithms, pp. 1–351. Wiley, New York (1975)zbMATHGoogle Scholar
  9. 9.
    Kaski, S., Kohonen, T.: Exploratory Data Analysis by the Self-Organizing Map: Structures of Welfare and Poverty in the World. In: Refenes, A., Abu-Mostafa, Y., Moody, J., Weigend, A. (eds.) Neural Networks in Financial Engineering, pp. 498–507. World Scientific, Singapore (1996)Google Scholar
  10. 10.
    Kohonen, T.: Self-Organizing Maps, 3rd edn., pp. 1–521. Springer, Berlin (2000)Google Scholar
  11. 11.
    Kohonen, T.: The Self-Organizing Map. Proceedings of the IEEE 78(9), 1464–1480 (1990)CrossRefGoogle Scholar
  12. 12.
    Laaksonen, J., Honkela, T. (eds.): WSOM 2011. LNCS, vol. 6731, pp. 1–380. Springer, Heidelberg (2011)zbMATHCrossRefGoogle Scholar
  13. 13.
    Lesthaeghe, R., Niedert, L.: US Presidential Elections and the Spatial Pattern of the American Second Demographic Transition. Population and Development Review 35(2), 391–400 (2009)CrossRefGoogle Scholar
  14. 14.
    Lopez, M.: Dissecting the 2008 Electorate: Most Diverse in U.S. History - Pew Research Center, (retrieved May 1, 2012)
  15. 15.
    Meilă, M.: Comparing Clusterings by the Variation of Information. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 173–187. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Neme, A., Hernández, S., Neme, O.: An Electoral Preferences Model Based on Self-Organizing Maps. Journal of Computational Science 2, 345–352 (2011)CrossRefGoogle Scholar
  17. 17.
    Neme, A., Hernández, S., Neme, O.: Self Organizing Maps as Models of Social Processes: The Case of Electoral Preferences. In: Laaksonen, J., Honkela, T. (eds.) WSOM 2011. LNCS, vol. 6731, pp. 51–60. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Niemelä, P., Honkela, T.: Analysis of Parliamentary Election Results and Socio-Economic Situation Using Self-Organizing Map. In: Príncipe, J.C., Miikkulainen, R. (eds.) WSOM 2009. LNCS, vol. 5629, pp. 209–218. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    The R project for statistical computing, (retrieved June 20, 2012)
  20. 20.
    Silver, N.: In Politics, Demographics Are Not Destiny -, (retrieved May 1, 2012)
  21. 21.
    Trosset, M.: Representing Clusters: K-Means Clustering, Self-Organizing Maps, and Multidimensional Scaling, Technical Report 08-03, Department of Statistics, Indiana University, Bloomington, IN (2008)Google Scholar
  22. 22.
    Tuia, D., Kaiser, C., Da Cunha, A., Kanevski, M.: Socio-economic Data Analysis with Scan Statistics and Self-organizing Maps. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 52–64. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Ultsch, A., Moerchen, F.: ESOM-Maps: tools for clustering, visualization, and classification with Emergent SOM, Technical Report Dept. of Mathematics and Computer Science, University of Marburg, Germany, No. 46 (2005)Google Scholar
  24. 24.
    United States Census Bureau. Download QuickFacts from the US Census Bureau, May 1, 2012)
  25. 25.
    United States Census Bureau. Dictionary of census data, (retrieved May 1, 2012)

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paul T. Pearson
    • 1
  • Cameron I. Cooper
    • 2
  1. 1.Hope CollegeHollandUSA
  2. 2.Fort Lewis CollegeDurangoUSA

Personalised recommendations