Teeth/Palate and Interdental Segmentation Using Artificial Neural Networks

  • Kelwin Fernandez
  • Carolina Chang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7477)


We present a computational system that combines Artificial Neural Networks and other image processing techniques to achieve teeth/palate segmentation and interdental segmentation in palatal view photographs of the upper jaw. We segment the images into teeth and non-teeth regions. We find the palatal arch by adjusting a curve to the teeth region, and further segment teeth from each other. Best results to detect and segment teeth were obtained with Multilayer Perceptrons trained with the error backpropagation algorithm in comparison to Support Vector Machines. Neural Networks reached up to 87.52% accuracy at the palate segmentation task, and 88.82% at the interdental segmentation task. This is an important initial step towards low-cost, automatic identification of infecto-contagious oral diseases that are related to HIV and AIDS.


teeth/palate segmentation multilayer perceptron support vector machines 


  1. 1.
    World Health Organization: Progress report 2011: Global HIV/AIDS response Epidemic update and health sector progress towards universal access. WHO Press, ISBN 978 92 4 150298 6,
  2. 2.
    Barr, C.E.: Dental management of HIV-associated oral mucosal lesions: current and experimental techniques. In: Robertsonn, P.B., Greenspan, J.S. (eds.) Perspectives on Oral Manifestation of AIDS: Diagnosis and Management of HIV-Associated Infections, pp. 77–95. PSG Publishing Co., Inc., Littleton (1988)Google Scholar
  3. 3.
    Arendorf, T.M., Bredekamp, B., Cloete, C., Sauer, G.: Oral manifestation of HIV infection in 600 South African patients. J. Oral Pathol. Med. 27, 176–179 (1998)CrossRefGoogle Scholar
  4. 4.
    Nassar, D., Ammar, H.: A neural network system for matching dental radiographs. Pattern Recognition 40, 65–79 (2006)CrossRefGoogle Scholar
  5. 5.
    Lin, P., Lai, Y., Huang, P.: An effective classification and numbering system for dental bitewing radiographs using teeth region and contour information. Pattern Recognition (2009)Google Scholar
  6. 6.
    Xiao, D., Ohya, J.: Contrast Enhancement of Color Images Based on Wavelet Transform and Human Visual System. In: Proceedings of the IASTED International Conference Graphics and Visualization in Engineering, Florida (2007)Google Scholar
  7. 7.
    Chimphlee, C., Hanan, A., Noor, M.: Unsupervised Anomaly Detection with Unlabeled Data Using Clustering. In: Proceedings of the Postgraduate Annual Research Seminar (2005)Google Scholar
  8. 8.
    Gendreau, M., Potvin, J.: Handbook of Metaheuristics. Springer (2010)Google Scholar
  9. 9.
    Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice Hall (2007)Google Scholar
  10. 10.
    Shapiro, L., Stockman, G.: Computer Vision. Prentice Hall (2001)Google Scholar
  11. 11.
    LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 9–50. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Burges, C.: A tutorial on support vector machines for pattern recognition. Knowledge Discovery and Data Mining 2(2) (1998)Google Scholar
  13. 13.
    Li, M., Cheung, Y.-M.: Automatic Segmentation of Color Lip Images Based on Morphological Filter. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part I. LNCS, vol. 6352, pp. 384–387. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kelwin Fernandez
    • 1
  • Carolina Chang
    • 1
  1. 1.Grupo de Inteligencia ArtificialUniversidad Simón BolívarCaracasVenezuela

Personalised recommendations