Advertisement

A Decision Support System for the Prediction of the Trabecular Fracture Zone

  • Vasileios Korfiatis
  • Simone Tassani
  • George K. Matsopoulos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7477)

Abstract

Prediction of trabecular fracture zone is a very important element for assessing the fracture risk in patients. The assumption that failure always occurs in local bands, the so called ‘fracture zones’, with the remaining regions of the structure largely unaffected has been visually verified. Researchers agreed that the identification of the weakest link in the trabecular framework can lead to the prediction of the fracture zone and consequently of the failure event. In this paper, a decision support system (DSS) is proposed for the automatic identification of fracture zone. Initially, an automatic methodological approach based on image processing is applied for the automatic identification of trabecular bone fracture zone in micro-CT datasets, after mechanical testing. Then, a local analysis of the whole specimen is performed on order to compare the structure (Volumes of Interest -VOI) of the broken region to the unbroken one. As a result, for every VOI, 29 morphometrical parameters were computed and used as initial features to the proposed DSS. The DSS comprises of two main modules: the feature selection module and the classifier. The feature selection module is used for reducing the initial size of the input features’ subset (29 features) and for keeping the most informative features in order to increase the classification’s module performance. To this end, the Sequential Floating Forward Selection (SFFS) algorithm with Fuzzy C-Means evaluation criterion was implemented. For the classification, several classification algorithms including the Multilayer Perceptron (MLP), the Support Vector Machines (SVM), the Naïve Bayesian (NB), the k-Nearest Neighbor (KNN) and the k-Means (KM) have been used. Comparing the performance of these classification algorithms, the SFFS-SVM scheme provided the best performance scoring 98% in terms of overall classification accuracy.

Keywords

Trabecular Fracture Zone Decision Support Systems Machine Learning Feature Selection Sequential Floating Forward Selection (SFFS) Multilayer Perceptron (MLP) Support Vector Machines (SVM) Naïve Bayesian (NB) k-Nearest Neighbor (KNN) k-Means (KM) 

References

  1. 1.
    Tassani, S., Ohman, C., Baruffaldi, F., Baleani, M., Viceconti, M.: Volume to density relation in adult human bone tissue. J. Biomech. 44, 103–108 (2011)CrossRefGoogle Scholar
  2. 2.
    Perilli, E., Baleani, M., Ohman, C., Fognani, R., Baruffaldi, F., Viceconti, M.: Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur. J. Biomech. 41, 438–446 (2008)CrossRefGoogle Scholar
  3. 3.
    Tassani, S., Ohman, C., Baleani, M., Baruffaldi, F., Viceconti, M.: Anisotropy and inhomogeneity of the trabecular structure can describe the mechanical strength of osteoarthritic cancellous bone. J. Biomech. 43, 1160–1166 (2010)CrossRefGoogle Scholar
  4. 4.
    Tassani, S., Asvestas, P.A., Matsopoulos, G.K., Baruffaldi, F.: Automatic Identification of Trabecular Bone Fracture. In: Bamidis, P.D., Pallikarakis, N. (eds.) MEDICON 2010. IFMBE Proceedings, vol. 29, pp. 296–299. Springer, Heidelberg (2010)Google Scholar
  5. 5.
    Tassani, S., Demenegas, F., Matsopoulos, G.K.: Local analysis of trabecular bone fracture. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 7454–7457 (2011)Google Scholar
  6. 6.
    Leroy, G., Chen, H.: Introduction to the special issue on decision support in medicine. Decision Support Systems 43, 1203–1206 (2007)CrossRefGoogle Scholar
  7. 7.
    Palaniswami, M.: Computational Intelligence in Gait Research: A Perspective on Current Applications and Future Challenges. IEEE Transactions on Information Technology in Biomedicine 13(5), 687–702 (2009)CrossRefGoogle Scholar
  8. 8.
    Mashor, M.Y., Jaafar, H.: Online sequential extreme learning machine for classification of mycobacterium tuberculosis in ziehl-neelsen stained tissue. In: 2012 International Conference on Biomedical Engineering, February 27-28, pp. 139–143 (2012)Google Scholar
  9. 9.
    Pena, E., Martínez, M.A.: Machine Learning Techniques as a Helpful Tool Toward Determination of Plaque Vulnerability. IEEE Transactions on Information Technology in Biomedicine 59(4), 1155–1161 (2012)Google Scholar
  10. 10.
    Madokoro, H., Otani, T., Kadowaki, S.: Experimental studies with a hybrid model of unsupervised neural networks. In: The 2011 International Joint Conference on Neural Networks (IJCNN), July 31-August 5, pp. 1659–1666 (2011)Google Scholar
  11. 11.
    Phlypo, R., Congedo, M.: SVM feature selection for multidimensional EEG data. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 22-27, pp. 781–784 (2011)Google Scholar
  12. 12.
    Christopher, J.J., Ramakrishnan, S.: Assessment and classification of mechanical strength components of human femur trabecular bone using texture analysis and neural network. J. Med. Syst. 32, 117–122 (2008)CrossRefGoogle Scholar
  13. 13.
    Ohman, C., Baleani, M., Perilli, E., Dall’Ara, E., Tassani, S., Baruffaldi, F., Viceconti, M.: Mechanical testing of cancellous bone from the femoral head: experimental errors due to off-axis measurements. J. Biomech. 40, 2426–2433 (2007)CrossRefGoogle Scholar
  14. 14.
    Matsopoulos, G.K., Delibasis, K.K., Mouravliansky, N.A., Asvestas, P.A., Nikita, K.S., Kouloulias, V.E., Uzunoglu, N.K.: CT-MRI automatic surface-based registration schemes combining global and local optimization techniques. Technol. Health Care 11, 219–232 (2003)Google Scholar
  15. 15.
    van den Elsen, P.A., Pol, E.J.D., Viergever, M.A.: Medical image matching-a review with classification. IEEE Engineering in Medicine and Biology Magazine 12, 26–39 (1993)CrossRefGoogle Scholar
  16. 16.
    Tassani, S., Demenegas, F., Matsopoulos, G.K.: Morphometry of trabecular bone fracture: preliminary study. In: XXIIIrd Congress of the International Society of Biomechanics, July 3-7, p. 69. International Society of Biomechanics, Brussels (2011)Google Scholar
  17. 17.
    Turner, C.H., Cowin, S.C., Rho, J.Y., Ashman, R.B., Rice, J.C.: The fabric dependence of the orthotropic elastic constants of cancellous bone. J. Biomech. 23, 549–561 (1990)CrossRefGoogle Scholar
  18. 18.
    Hildebrand, T., Ruegsegger, P.: A new method for the model-independent assessment of thickness in three-dimensional images. Journal of Microscopy 185, 67 (1997)CrossRefGoogle Scholar
  19. 19.
    Hildebrand, T., Ruegsegger, P.: Quantification of Bone Microarchitecture with the Structure Model Index. Comput. Methods Biomech. Biomed. Engin. 1, 15–23 (1997)CrossRefGoogle Scholar
  20. 20.
    Odgaard, A., Gundersen, H.J.: Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14, 173–182 (1993)CrossRefGoogle Scholar
  21. 21.
    Cowin, S.C.: The relationship between the elasticity tensor and the fabric tensor. Mechanics of Materials 4, 137 (1985)CrossRefGoogle Scholar
  22. 22.
    Odgaard, A.: Three-dimensional methods for quantification of cancellous bone architecture. Bone 20, 315–328 (1997)CrossRefGoogle Scholar
  23. 23.
    Harrigan, T.P., Mann, R.W.: Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. Journal of Materials Science 19, 761 (1984)CrossRefGoogle Scholar
  24. 24.
    Whitehouse, W.J.: The quantitative morphology of anisotropic trabecular bone. J. Microsc. 101, 153–168 (1974)CrossRefGoogle Scholar
  25. 25.
    Tassani, S., Particelli, F., Perilli, E., Traina, F., Baruffaldi, F., Viceconti, M.: Dependence of trabecular structure on bone quantity: a comparison between osteoarthritic and non-pathological bone. Clin. Biomech. (Bristol, Avon) 26, 632–639 (2011)CrossRefGoogle Scholar
  26. 26.
    Goulet, R.W., Goldstein, S.A., Ciarelli, M.J., Kuhn, J.L., Brown, M.B., Feldkamp, L.A.: The relationship between the structural and orthogonal compressive properties of trabecular bone. J. Biomech. 27, 375–389 (1994)CrossRefGoogle Scholar
  27. 27.
    Majumdar, S., Kothari, M., Augat, P., Newitt, D.C., Link, T.M., Lin, J.C., Lang, T., Lu, Y., Genant, H.K.: High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 22, 445–454 (1998)CrossRefGoogle Scholar
  28. 28.
    Pudil, P., Novovicova, J., Kittler, J.: Floating search methods in feature selection. Pattern Recognition Letters 15, 1119–1125 (1994)CrossRefGoogle Scholar
  29. 29.
    Nock, R., Nielsen, F.: On Weighting Clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(8), 1–13 (2006)CrossRefGoogle Scholar
  30. 30.
    Rosenblatt, F.: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan Books, Washington, DC (1961)Google Scholar
  31. 31.
    Cortes, C., Vapnik, V.N.: Support-Vector Networks. Machine Learning 20 (1995)Google Scholar
  32. 32.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Elsevier Inc. (2009)Google Scholar
  33. 33.
    Lloyd, S.P.: Least squares quantization in PCM. IEEE Transactions on Information Theory 28(2), 129–137 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice-Hall, London (1982)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vasileios Korfiatis
    • 1
  • Simone Tassani
    • 1
  • George K. Matsopoulos
    • 1
  1. 1.Institute of Communication and Computer SystemZografouGreece

Personalised recommendations