Advertisement

Facial Expression Recognition Using Game Theory

  • Kaushik Roy
  • Mohamed S. Kamel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7477)

Abstract

Accurate detection of lip contour is important in many application areas, including biometric authentication, human computer interaction, and facial expression recognition. In this paper, we propose a new lip boundary localization scheme based on Game Theory (GT) to improve the facial expression detection performance. In addition, we use GT for selecting the proper set of facial features. We apply the Extended Contribution-Selection Algorithm (ECSA) for the dimensionality reduction of the facial features using a coalitional GT-based framework. We have conducted several sets of experiments to evaluate the proposed approach. The results show that the proposed approach has achieved recognition rates of 93.1% and 92.7% on the JAFFE and CK+ datasets, respectively.

Keywords

Facial expression recognition coalitional game theory extended contribution selection algorithm 

References

  1. 1.
    Shan, C., Gong, S., McOwan, P.: Facial expression recognition based on Local Binary Patterns: A comprehensive study. Image and Vis. Comput. 27(6), 803–816 (2009)CrossRefGoogle Scholar
  2. 2.
    Li, K., Wang, M., Liu, M., Zhao, A.: Improved level set method for lip contour detection. In: IEEE Intl. Conf. Image Process., pp. 673–676 (2010)Google Scholar
  3. 3.
    Chakraborty, A., Duncan, J.: Game-theoretic integration for image segmentation. IEEE Trans. Pattern Anal. and Machine Intell. 21(1), 12–30 (1999)CrossRefGoogle Scholar
  4. 4.
    Makrehchi, M., Kamel, M.: Aggressive feature selection by feature ranking. In: Liu, H., Motoda, H. (eds.) Computational Methods of Feature Selection, pp. 313–330. Chapman and Hall/CRC Press (2007)Google Scholar
  5. 5.
    Cohen, S., Dror, D., Ruppin, E.: Feature selection via coalitional game theory. Neural Computa. 19, 1939–1961 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Viola, P., Jones, M.: Robust Real-Time Face Detection. Intl. J. Comp. Vis. 57(2), 137–154 (2004)CrossRefGoogle Scholar
  7. 7.
    Ginneken, B., Frangi, A., Staal, J., Romeny, B., Viergever, M.: Active shape model segmentation with optimal features. IEEE Trans. Medical Imaging 21(8), 924–933 (2002)CrossRefGoogle Scholar
  8. 8.
    Li, C., Xu, C., Gui, C., Fox, M.: Level set evolution without re-initialization: a new variational formulation. In: Proc. IEEE Intl. Conf. Comp. Vis. and Pattern Recog., pp. 430–436 (2005)Google Scholar
  9. 9.
    Bashyal, S., Venayagamoorthy, G.: Recognition of facial expressions using Gabor wavelets and learning vector quantization. Intl. J. Engg. App. of Artificial Intell. 21(7), 1–9 (2008)Google Scholar
  10. 10.
    Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, New York (1998)zbMATHGoogle Scholar
  11. 11.
    Lyons, M., Budynek, J., Akamatsu, S.: Automatic classification of single facial images. IEEE Trans. Pattern Anal. and Machine Intell. 21(12), 1357–1362 (1999)CrossRefGoogle Scholar
  12. 12.
    Lucey, P., Cohn, J., Kanade, T., Saragih, J., Ambadar, Z.: The extended Cohn-Kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression. In: IEEE Intl. Conf. Computer Vis. and Pattern Recog. Workshop, pp. 94–101 (2010)Google Scholar
  13. 13.
    Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Analysis and Machine Intelligence 22(3), 266–280 (2000)CrossRefGoogle Scholar
  14. 14.
    Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models—their training and application. Computer Vis. Image Understand. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  15. 15.
    Goldberg, D.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Professional (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kaushik Roy
    • 1
  • Mohamed S. Kamel
    • 1
  1. 1.Centre for Pattern Analysis and Machine IntelligenceUniversity of WaterlooCanada

Personalised recommendations