Skip to main content

The Hybrid Algorithm for Procedural Generation of Virtual Scene Components

  • Conference paper
Advances in Visual Computing (ISVC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7432))

Included in the following conference series:

  • 2770 Accesses

Abstract

The aim of this paper is to present a 3D hybrid shape construction that benefits from discrete and continuous modeling approaches. The proposed technique addresses the problem of automated modeling of virtual scene components such as caves, buildings and clouds. The approach combines two independent methods well known in three-dimensional computer graphics: shape grammar and shape morphing. The modeled structures are characterized by geometrical complexity with inner graph structure more optimized than in classical CSG approach. In this paper, we mainly focus on the description of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wonka, P., Wimmer, M., Sillion, F., Ribarsky, W.: Instant architecture. ACM Transactions on Graphics 22(3), 669–677 (2003)

    Article  Google Scholar 

  2. Parish, Y.I.H., Muller, P.: Procedural modeling of cities. In: Proceedings (SIGGRAPH 2001), pp. 301–308. ACM Press, E. Fiume (2001)

    Google Scholar 

  3. Greuter, S., Parker, J., Stewart, N., Leach, G.: Real-time procedural generation of pseudo infinite cities. In: Proceedings (GRAPHITE 2003), pp. 87–95. ACM Press (2003)

    Google Scholar 

  4. Peytavie, A., Galin, E., Grosjean, J., Merrilou, S.: Arches: a Framework for Modelling Complex Terrains, Computer Graphics Forum. In: Proceedings EUROGRAPHICS 2009, vol. 28(2), pp. 457–467 (2009)

    Google Scholar 

  5. Warszawski, K., Nikiel, S.: A proposition of particle system-based technique for automated terrain surface modeling. In: Proceedings of the 5th International North American Conference on Intelligent Games and Simulation (Game-On-NA 2009), pp. 17–19 (2009) ISBN 978-9077381-49-6

    Google Scholar 

  6. Bouthors, A., Neyret, F.: Modelling Clouds Shape. In: Proceedings EUROGRAPHICS (2004)

    Google Scholar 

  7. Schpok, J., Simons, J., Ebert, D.S., Hansen, C.: A real-time cloud modeling, rendering, and animation system. In: Symposium on Computer Animation 2003, pp. 160–166 (2003)

    Google Scholar 

  8. Dobashi, Y., Kaneda, K., Yamashita, H., Okita, T., Nishita, T.: A simple, efficient method for realistic animation of clouds. In: Proceedings of ACM SIGGRAPH 2000, pp. 19–28 (2000)

    Google Scholar 

  9. Ebert, D.S.: Volumetric procedural implicit functions: A cloud is born. In: Whitted, T. (ed.) SIGGRAPH 1997 Technical Sketches Program, ACM SIGGRAPH. Addison Wesley (1997) ISBN 0-89791-896-7

    Google Scholar 

  10. Elinas, P., Sturzlinger, W.: Real-time rendering of 3D clouds. Journal of Graphics Tools 5(4), 33–45 (2000)

    Article  MATH  Google Scholar 

  11. Nishita, T., Nakamae, E., Dobashi, Y.: Display of clouds taking into account multiple aniso-tropic scattering and sky light. In: Rushmeier, H. (ed.) SIGGRAPH 1996 Conference Proceedings, ACM SIGGRAPH, pp. 379–386. Addison Wesley (1996)

    Google Scholar 

  12. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants, pp. 101–107. Springer (1991) ISBN 978-0387972978

    Google Scholar 

  13. Am Ende, B.A.: 3D Mapping of Underwater Caves. IEEE Computer Graphics Applications 21(2), 14–20 (2001)

    Article  Google Scholar 

  14. Boggus, M., Crawfis, R.: Procedural Creation of 3D Solution Cave Models. In: Proceedings of the 20th IASTED International Conference on Modelling and Simulation, pp. 180–186 (2009)

    Google Scholar 

  15. Boggus, M., Crawfis, R.: Explicit Generation of 3D Models of Solution Caves for Virtual Environments. In: Proceedings of the 2009 International Conference on Computer Graphics and Virtual Reality, pp. 85–90 (2009)

    Google Scholar 

  16. Schuchardt, P., Bowman, D.A.: The Benefits of Immersion for Spatial Understanding of Complex Underground Cave Systems. In: Proceedings of the 2007 ACM Symposium on Virtual Reality Software and Technology (VRST 2007), pp. 121–124 (2007)

    Google Scholar 

  17. Johnson, L., Yannakakis, G.N., Togelius, J.: Cellular Automata for Real-time Generation of Infinite Cave Levels. In: Proceedings of the 2010 Workshop on Procedural Content Generation in Games (PC Games 2010), pp. 1–4 (2010)

    Google Scholar 

  18. Clempner, J.B., Poznyak, A.S.: Convergence method, properties and computational complexity for Lyapunov games. The International Journal of Applied Mathematics and Computer Science 21(2), 349–361 (2011)

    Article  MathSciNet  Google Scholar 

  19. Di Trapani, L.J., Inanc, T.: NTGsim: A graphical user interface and a 3D simulator for nonlinear trajectory generation methodology. The International Journal of Applied Mathematics and Computer 20(2), 305–316 (2010)

    MATH  Google Scholar 

  20. Stiny, G., Gips, J.: Shape grammars and the generative specification of painting and sculpture. In: Information Processing, vol. 71, pp. 1460–1465. North-Holland Publishing Company (1972)

    Google Scholar 

  21. Stiny, G.: Pictorial and Formal Aspects of Shape and Shape Grammars. Birkhauser Verlag, Basel (1975)

    Google Scholar 

  22. Stiny, G.: Introduction to shape and shape grammars. Environment Planning B 7(3), 343–361 (1980)

    Article  Google Scholar 

  23. Martyn, T.: A new approach to morphing 2D affine IFS fractals. Computers & Graphics 28, 249–272 (2004)

    Article  Google Scholar 

  24. Alexa, M., Cohen-Or, D., Levin, D.: As rigid as possible polygon morphing. Computers Graphics (SIGGRAPH 2000) 34, 157–164 (2000)

    Google Scholar 

  25. Wolberg, G.: Image morphing: a survey. The Visual Computer 14(8-9), 360–372 (1998)

    Article  Google Scholar 

  26. Lazarus, F., Verrous, A.: Three-dimensional metamorphosis: a survey. The Visual Computer 14(8-9), 373–389 (1998)

    Article  Google Scholar 

  27. Kent, J.R., Carlson, W.E., Parent, R.E.: Shape transformation for polyhedral objects. Computer Graphics (SIGGRAPH 1992) 26, 47–54 (1992)

    Article  Google Scholar 

  28. Lee, A.W.F., Dobkin, D., Sweldens, W., Shroeder, P.: Multiresolution mesh morphing. Computer Graphics (SIGGRAPH 1999) 26, 43–46 (1999)

    Google Scholar 

  29. Turk, G., O’Brien, J.F.: Shape Transformation using variational implicit functions. Computer Graphics (SIGGRAPH 1999) 33, 335–342 (1999)

    Google Scholar 

  30. Velho, L., Gomes, J., Figueiredo, L.H.: Implicit Objects in Computer Graphics. Springer (2002) ISBN: 978-0387984247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zawadzki, T., Kujawa, D. (2012). The Hybrid Algorithm for Procedural Generation of Virtual Scene Components. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2012. Lecture Notes in Computer Science, vol 7432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33191-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33191-6_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33190-9

  • Online ISBN: 978-3-642-33191-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics