Skip to main content

Binary Full-Adder in a Single Quantum System

Parallelization Using the Quantum Hamiltonian Computing Approach

  • Conference paper
  • First Online:
Architecture and Design of Molecule Logic Gates and Atom Circuits

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

  • 1092 Accesses

Abstract

In this short book chapter we show how to implement a complex Boolean function in a simple quantum system using the quantum Hamiltonian computing approach (QHC) [Ref: J. Phys. A: Math. Theor. 44 (2011) 155302 (15pp)]. Following the QHC approach, the logical inputs are encoded in local modifications of the system’s Hamiltonian, and the outputs are read in the oscillation frequency of the population of well-defined target states. Few simple examples are presented first introducing a graphical aid that facilitates the design of QHC circuits. Using this graphical analogue to our symbolic analysis, we demonstrate how to easily implement multiple-inputs multiple-outputs logic gates taking benefit from the superposition principle. A binary full-adder is presented using this generalization of the QHC approach. We also show that using their nonlocal effect, each logical input needs to appear only once in the system and that different logical outputs are computed simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. A 400, 97–117 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Nielsen, A.M., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Shor, P.W.: Polynomial-time algorithms for prime factorisation. SIAM J. Sci. Stat. Comput. 26, 1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Grover, L.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  5. Henessy, J.L., Patterson, D.A.: Computer Architecture, A Quantitative Approach. Elsevier, Amsterdam (1990)

    Google Scholar 

  6. Gates, E.D.: Introduction to Electronics, 4th edn. Delmar Thomson (Cengage) Learning. Cengage (2000)

    Google Scholar 

  7. Chang, T.-Y., Hsiao, M.-J.: Carry-select adder using single ripple-carry adder. Electron. Lett. 34, 2101 (1998)

    Article  Google Scholar 

  8. Shannon C.E.: A symbolic analysis of relay and switching circuits. Master’s thesis, MIT, Cambridge (1936)

    Google Scholar 

  9. Chowdhurry, S.R., Banerjee, A., Roy, A., Saha, H.: A high speed 8 transistor full adder design using 3 transistor XOR gates. Int. J. Elec. 2, 217 (2008)

    Google Scholar 

  10. Fiurasek, J., Cerf, N.J., Duchemin, I., Joachim, C.: Intramolecular Hamiltonian logic gates. Physica E 24, 161 (2004)

    Article  ADS  Google Scholar 

  11. Duchemin, I., Fiurasek, J., Cerf, N.J., Joachim, C.: Hamiltonian logic gates: computing inside a molecule. Int. J. Nano. 4, 107 (2005)

    Article  Google Scholar 

  12. Duchemin, I., Joachim, C.: A quantum digital half adder inside a single molecule. Chem. Phys. Lett. 406, 167 (2005)

    Article  ADS  Google Scholar 

  13. Duchemin, I., Renaud, N., Joachim, C.: An intramolecular digital 1/2-adder with tunneling current drive and read-outs. Chem. Phys. Lett. 452, 269–274 (2008)

    Article  ADS  Google Scholar 

  14. Renaud, N., Joachim, C.: Design and stability of NOR and NAND logic gates constructed with three quantum states. Phys. Rev. A 78, 062316 (2008)

    Article  ADS  Google Scholar 

  15. Renaud, N., Ito, M., Shangguan, M., Saeys, M., Hliwa, M. Joachim, C.: A NOR-AND quantum running gate molecule. Chem. Phys. Lett. 472, 74–79 (2009)

    Article  ADS  Google Scholar 

  16. Renaud, N., Joachim, C.: Classical Boolean Logic gates with quantum systems. J. Phys. A: Math. Theor. 44, 155302 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  17. Joachim, C., Ratner, M.A.: Molecular electronics: Some view on transport junction and beyond. PNAS 102, 8801 (2001)

    Article  ADS  Google Scholar 

  18. Renaud, N., Ratner, M.A., Joachim, C.: A time-dependent approach to electronic transmission in model molecular junctions. J. Phys. Chem. B 11518, 5582 (2011)

    Article  Google Scholar 

  19. Soe, W.-H., Manzano, C., Renaud, N., de Mendoza, P., de Sarkar, A., Ample, F., Hliwa, M., Echavarren, A.M., Chandrasekhar, N., Joachim, C.: Manipulating molecular quantum states with classical metal atom inputs: demonstration of a single molecule NOR logic gate. ACS Nano 5, 1436 (2011)

    Article  Google Scholar 

  20. Soe, W.-H., Manzano, C., Renaud, N., de Mendoza, P., de Sarkar, A., Ample, F., Hliwa, M., Echavarren, A.M., Chandrasekhar, N., Joachim, C.: Demonstration of a NOR logic gate using a single molecule and two surface gold atoms to encode the logical input. Phys. Rev. B 83, 155443 (2011)

    Article  ADS  Google Scholar 

  21. Renaud, N., Hliwa, M., Joachim, C.: Quantum desing rules for single molecule logic gates. Phys. Chem. Chem. Phys. 13, 14404 (2011)

    Article  Google Scholar 

  22. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Atom-Photon Interactions. Wiley, New York (1992)

    Google Scholar 

  23. Wei, H., Gristede, G., Sanda, P., Wang, S.Y., Heidel, D.F.: Implementation of a self-resetting CMOS 64-bit parallel adder with enhanced testability. IEEE J. Solid-State Circ. 34, 1108 (1999)

    Article  Google Scholar 

  24. Kabanets, V., Cai, J.: Circuit minimization problem. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, STOC’00, 73–79. ACM press (2000)

    Google Scholar 

  25. Barbosa, G.A.: Quantum half-adder. Phys. Rev. A 73, 052321 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the EU Commission, the Japan’s ministry of education (MEXT), and the US Department of Energy for their financial support through, respectively, the ICT AtMol (2011–2014) integrated project, the WPI MANA program, and the Non-Equilibrium Energy Research Center (NERC - Award Number DE-SC0000989)

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

A.1 Simple Symbolic Analysis of the QHC Approach

A brief overview of the recently developed symbolic analysis of simple quantum systems is presented in this appendix. The development of the general symbolic analysis developed in Sect. 2 is based on this previous work, and the interested reader should refer to the reference [16] for further details. The general form of the Hamiltonian implementing a 1-output logic gate reads:

(A.2)

where \(\vert {\phi }_{a}\rangle\) is the initial state of the evolution and \(\vert {\phi }_{b}\rangle\) the target state where the logical output status is monitored. If the population of \(\vert {\phi }_{b}\rangle\) oscillates with a high frequency, the logical output is 1 and is 0 if this oscillation frequency is low. The Lowdin partitioning of the system is used to access the value of this oscillation frequency, noted Ω in the following. Introducing the projector P on the \(\{\vert {\phi }_{a}\rangle ,\vert {\phi }_{b}\rangle \}\) subspace and the projector Q on the rest of the system, the effective Lowdin partitioning reads [22]:

$${\mathcal{H}}_{\mathrm{eff}}({E},\boldsymbol{\alpha}) = \boldsymbol{P}\mathcal{H}(\alpha )\boldsymbol{P} {+\lim }_{\eta \rightarrow 0}P\mathcal{V}Q \frac{1} {E \pm \mathrm{i}\eta -{\mathcal{H}}_{0}(\boldsymbol{\alpha})}Q\mathcal{V}\boldsymbol{P} $$
(A.2)

The evolution generated by this 2 ×2 Hamiltonian smooth the complex evolution going through the \({\mathcal{H}}_{0}(\alpha )\) subspace by a Rabi-like evolution whose oscillation frequency is precisely Ω. An expression of Ω is given by the difference of the two eigenvalues of \({\mathcal{H}}_{\mathrm{eff}}(E,\alpha )\). This expression can be written in term of a Cauchy principal part and a Dirac distribution as:

$$\boldsymbol{\varOmega} (\boldsymbol{\alpha}) = \mathcal{P}\left ({\mathcal{F}}^{-1}({E},\boldsymbol{\alpha} )\right ) \mp \mathrm{i}\pi \delta \big{(}\mathcal{F}({E},\boldsymbol{\alpha})\big{)} $$
(A.3)

where the function \(\mathcal{F}({E},\boldsymbol{\alpha})\) comes from the diagonalization of \({\mathcal{H}}_{\mathrm{eff}}({E},\boldsymbol{\alpha})\) and reads:

$$\mathcal{F}({E},\boldsymbol{\alpha}) = \mathcal{A}\times \mathrm{det}\big{(}{E} -{\mathcal{H}}_{0}(\boldsymbol{\alpha})\big{)} $$
(A.4)

with \(\mathcal{A}\,=\,\big{[}\sqrt{{({h}_{aa } - {h}_{bb } )}^{2 } + 4{h}_{ab }^{2}}{\big{]}}^{-1}\) and \({h}_{ij}\,=\,\langle {\phi }_{i}\vert V adj[E -{\mathcal{H}}_{0}(\boldsymbol{\alpha})]V \vert {\phi }_{j}\rangle\). The principal part refers to the slow oscillation frequency obtained when \(\mathcal{F}({E},\boldsymbol{\alpha})\neq 0\). At the contrary, when \(\mathcal{F}({E},\boldsymbol{\alpha})\,=\,0\), the Dirac distribution dominates (1), and this leads to a high oscillation frequency. We are particularly interested by locating the points where \(\mathcal{F}({E},\boldsymbol{\alpha})\,=\,0\) since they correspond to the rare values of the phase space where a 1 logical output is obtained. Consequently, we approximate the expression of Ω only considering the Dirac distributions. Our symbolic analysis relies therefore on the expression:

$$\mathfrak{B}({E},\boldsymbol{\alpha}) = \delta \big{(}\mathcal{F}({E},\boldsymbol{\alpha})\big{)} $$
(A.5)

This last expression is however not a symbolic analysis since it does no involve Boolean operators. A decomposition of \(\mathfrak{B}({E},\boldsymbol{\alpha})\) over the possible values of the logical inputs can be obtained using the properties of the Fourier transform of Dirac distributions. Using this decomposition, (A.5) is reexpressed as a sum of Dirac distribution weighted by Boolean operators. In its most general form, these operators are symmetric Boolean operators, \({\mathcal{S}}_{i}(\boldsymbol{\alpha})\), that equals 1 if i logical inputs equal one. This expression reads:

$$\mathfrak{B}({E},\boldsymbol{\alpha}) =\sum\limits_{i=0}^{N}{\mathcal{S}}_{ i}(\boldsymbol{\alpha}) \cdot \delta \big{(}\mathcal{F}({E},{\boldsymbol{\alpha}}_{{2}^{i}-1})\big{)} $$
(A.6)

Each Dirac distribution is associated with one of the Boolean operator. Therefore, one or several \({\mathcal{S}}_{i}(\boldsymbol{\alpha})\) operators can be selected by canceling out the argument of their respective distribution.

A.2 Pseudo-Boolean Symbolic Expression in the General Case

The demonstration of (6) can be obtained from the same Lowdin partitioning used in the A.1. However, a simpler and more insightful demonstration is possible studying the properties of the population of the target states. To demonstrate (6), the complete expression of \({\mathcal{P}}_{n}(t)\), when the \(\vert {\boldsymbol{\Phi} }_{a}\rangle\) and \(\vert {\boldsymbol{\Phi} }_{{b}_{n}}\rangle\) are given by (4) and (5), reads:

$${\mathcal{P}}_{a{b}_{n}}(t) = \frac{1} {L{L}_{{b}_{n}}}{\left \vert \sum\limits_{{\lambda }_{a}=1}^{L}\sum\limits_{\lambda =1}^{{L}_{{b}_{n}} }\langle {\phi }_{b}^{({s}_{n}^{\lambda }) }\vert {\mathrm{e}}^{-\mathrm{i}\mathcal{H}(\alpha )t}\vert {\phi }_{ a}^{({\lambda }_{a})}\rangle \right \vert }^{2} $$
(A.7)

A very fast oscillation is only obtained between two states \(\vert {\phi }_{b}^{({s}_{n}^{\lambda }) }\rangle\) and \(\vert {\phi }_{a}^{({\lambda }_{a})}\rangle\) with the same energy. Therefore, to have a resonant oscillation, we must have \({s}_{n}^{\lambda }\,=\,{\lambda }_{a}\). Neglecting the low-frequency components of (A.7) which does not respect this last condition leads to:

$${\mathcal{P}}_{a{b}_{n}}(t) \simeq \frac{1} {L{L}_{{b}_{n}}}{\left \vert \sum\limits_{\lambda =1}^{{L}_{{b}_{n}} }\langle {\phi }_{b}^{({s}_{n}^{\lambda }) }\vert {\mathrm{e}}^{-\mathrm{i}\mathcal{H}(\alpha )t}\vert {\phi }_{ a}^{({s}_{n}^{\lambda }) }\rangle \right \vert }^{2} $$
(A.8)

Considering only the cases where only one eigenenergy of \({\mathcal{H}}_{0}(\boldsymbol{\alpha})\) is possibly equal to one \({E}_{l}\,=\,\langle {\phi }_{a}^{(l)}\vert \mathcal{H}\vert {\phi }_{a}^{(l)}\rangle \,=\,\langle {\phi }_{b}^{(l)}\vert \mathcal{H}\vert {\phi }_{b}^{(l)}\rangle\) energy leads to:

$${\mathcal{P}}_{a{b}_{n}}(t) \simeq \frac{1} {L{L}_{{b}_{n}}}\sum\limits_{\lambda =1}^{{L}_{{b}_{n}} }{\left \vert \langle {\phi }_{b}^{({s}_{n}^{\lambda }) }\vert {\mathrm{e}}^{-\mathrm{i}\mathcal{H}(\alpha )t}\vert {\phi }_{ a}^{({s}_{n}^{\lambda }) }\rangle \right \vert }^{2} $$
(A.9)

since the crossed terms \(\langle {\phi }_{b}^{(k)}\vert {\mathrm{e}}^{-\mathrm{i}\mathcal{H}(\alpha )t}\vert {\phi }_{a}^{(k)}\rangle \langle {\phi }_{b}^{(l)}\vert {\mathrm{e}}^{-\mathrm{i}\mathcal{H}(\alpha )t}\vert {\phi }_{a}^{(l)}\rangle\) are null unless k = l. We clearly see here that if only one term of this sum is resonant, then the maximum amplitude for small times of (A.9) is \({(L{L}_{{b}_{n}})}^{-1}\). Now, if κ \({\mathcal{H}}_{0}(\boldsymbol{\alpha})\) eigenenergies are equal to κ different E λ, then very high-frequency components appear in \({\mathcal{P}}_{a{b}_{n}}(t)\) and the maximum amplitude this function reaches for small times is \({\kappa }^{2}/(L{L}_{{b}_{n}})\). For example, if one \({\mathcal{H}}_{0}(\boldsymbol{\alpha})\) eigenenergy is equal to E i and another one to E j , then a \(1/\hslash \vert {E}_{i} - {E}_{j}\vert \) frequency appears in the \({\mathcal{P}}_{a{b}_{n}}(t)\) spectrum and the small time amplitude of this function increases to \(4/(L{L}_{{b}_{n}})\). Such a situation is however not explored in the following.

Since (A.9) is the superposition of elementary terms, the secular oscillation rate, Ω n , is also the superposition of the secular oscillation rates of each \(\big{\vert }\langle {\phi }_{b}^{({s}_{n}^{\lambda }) }\vert {\mathrm{e}}^{-\mathrm{i}\mathcal{H}(\alpha )t}\vert {\phi }_{a}^{({s}_{n}^{\lambda }) }\rangle {\big{\vert }}^{2}\) function given by:

$${\boldsymbol{\varOmega}}_{n}(\boldsymbol{\alpha}) =\sum\limits_{\lambda =1}^{{L}_{{b}_{n}} }\mathcal{P}\left ({\mathcal{F}}^{-1}({E}_{{ s}_{n}^{\lambda }},\boldsymbol{\alpha})\right ) \mp \mathrm{i}\pi \delta \big{(}\mathcal{F}({E}_{{s}_{n}^{\lambda }},\boldsymbol{\alpha})\big{)} $$
(A.10)

Neglecting the principal part in (A.10) to define the pseudo-Boolean symbolic expression of \({\boldsymbol{\varOmega}}_{n}(\boldsymbol{\alpha})\) leads to:

$$\mathfrak{B}(\boldsymbol{\alpha}) =\sum\limits_{\lambda =1}^{{L}_{{b}_{n}} }\delta \big{(}\mathcal{F}({E}_{{s}_{n}^{\lambda }},\boldsymbol{\alpha})\big{)} $$
(A.11)

Using the decomposition of each term of this sum over the symmetric Boolean operators introduced in the previous section leads finally to :

$$\mathfrak{B}(\boldsymbol{\alpha}) =\sum\limits_{i=1}^{M}{\mathcal{S}}_{ i}(\boldsymbol{\alpha}) \cdot \left [\sum\limits_{\lambda =1}^{{L}_{{b}_{n}} }\delta \big{(}\mathcal{F}({E}_{{s}_{n}^{\lambda }},{\boldsymbol{\alpha}}_{{2}^{i}-1})\big{)}\right ] $$
(A.12)
$$\mathcal{F}({E}_{{s}_{n}},\boldsymbol{\alpha}) = \frac{\mathrm{det}\left ({E}_{{s}_{n}} -{\mathcal{H}}_{0}(\boldsymbol{\alpha})\right )} {\sqrt{{({h}_{aa } - {h}_{bb } )}^{2 } + 4{h}_{ab }^{2}}} $$
(A.13)

with \({h}_{ij} =\langle {\phi }_{i}^{({s}_{n})}\vert V \;\mathrm{adj}[{E}_{{s}_{ n}} -{\mathcal{H}}_{0}(\boldsymbol{\alpha})]V \vert {\phi }_{j}^{({s}_{n})}\rangle\). This completes the demonstration of our generalization of the QHC approach to large systems.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Renaud, N., Joachim, C. (2013). Binary Full-Adder in a Single Quantum System. In: Lorente, N., Joachim, C. (eds) Architecture and Design of Molecule Logic Gates and Atom Circuits. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33137-4_17

Download citation

Publish with us

Policies and ethics