Skip to main content

Moment-Based Boundary Conditions for Lattice Boltzmann Magnetohydrodynamics

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications 2011

Abstract

We present a moment-based approach for implementing boundary conditions in a lattice Boltzmann formulation of magnetohydrodynamics. Hydrodynamic quantities are represented using a discrete set of distribution functions that evolve according to a cut-down form of Boltzmann’s equation from continuum kinetic theory. Electromagnetic quantities are represented using a set of vector-valued distribution functions. The nonlinear partial differential equations of magnetohydrodynamics are thus replaced by two constant-coefficient hyperbolic systems in which all nonlinearities are confined to algebraic source terms. Further discretising these systems in space and time leads to efficient and readily parallelisable algorithms. However, the widely used bounce-back boundary conditions place no-slip boundaries approximately half-way between grid points, with the precise position being a function of the viscosity and resistivity. Like most lattice Boltzmann boundary conditions, bounce-back is inspired by a discrete analogue of the diffuse and specular reflecting boundary conditions from continuum kinetic theory. Our alternative approach using moments imposes no-slip boundary conditions precisely at grid points, as demonstrated using simulations of Hartmann flow between two parallel planes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett, S.: A lattice Boltzmann model for diffusion of binary gas mixtures. Ph.D. thesis, University of Cambridge (2010). http://www.dspace.cam.ac.uk/handle/1810/226851.

  2. Bennett, S., Asinari, P., Dellar, P.J.: A lattice Boltzmann model for diffusion of binary gas mixtures that includes diffusion slip. Int. J. Numer. Meth. Fluids. 69, 171–189 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  3. Biskamp, D.: Nonlinear Magnetohydrodynamics. Cambridge University Press, Cambridge (1993).

    Book  Google Scholar 

  4. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1970).

    Google Scholar 

  5. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998).

    Article  MathSciNet  Google Scholar 

  6. Dellar, P.J.: Lattice kinetic schemes for magnetohydrodynamics. J. Comput. Phys. 179, 95–126 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  7. Dellar, P.J.: Incompressible limits of lattice Boltzmann equations using multiple relaxation times. J. Comput. Phys. 190, 351–370 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  8. Dellar, P.J.: An interpretation and derivation of the lattice Boltzmann method using Strang splitting. Comput. Math. Applic. (2011). Published online, doi:10.1016/j.camwa.2011.08.047.

    Google Scholar 

  9. Dellar, P.J.: Lattice Boltzmann formulation for Braginskii magnetohydrodynamics. Computers & Fluids 46, 201–205 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  10. d’Humières, D., Ginzburg, I.: Viscosity independent numerical errors for Lattice Boltzmann models: From recurrence equations to “magic” collision numbers. Comput. Math. Applic. 58, 823–840 (2009).

    Google Scholar 

  11. Ginzbourg, I., Adler, M.P.: Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. J. Phys. II France 4, 191–214 (1994).

    Article  Google Scholar 

  12. He, X., Chen, S., Doolen, G.D.: A novel thermal model of the lattice Boltzmann method in incompressible limit. J. Comput. Phys. 146, 282–300 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  13. He, X.Y., Zou, Q.S., Luo, L.S., Dembo, M.: Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. J. Statist. Phys. 87, 115–136 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  14. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon, Oxford (1960). 2nd edition 1984.

    Google Scholar 

  15. Pattison, M., Premnath, K., Morley, N., Abdou, M.: Progress in lattice Boltzmann methods for magnetohydrodynamic flows relevant to fusion applications. Fusion Eng. Design 83, 557–572 (2008).

    Article  Google Scholar 

  16. Qian, Y.H., d’Humières, D., Lallemand, P.: Lattice BGK models for the Navier–Stokes equation. Europhys. Lett. 17, 479–484 (1992).

    Google Scholar 

  17. Riley, B., Richard, J., Girimaji, S.S.: Assessment of magnetohydrodynamic lattice Boltzmann schemes in turbulence and rectangular jets. Int. J. Mod. Phys. C 19, 1211–1220 (2008).

    Article  MATH  Google Scholar 

  18. Succi, S.: The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001).

    MATH  Google Scholar 

  19. Vahala, G., Keating, B., Soe, M., Yepez, J., Vahala, L., Carter, J., Ziegeler, S.: MHD turbulence studies using lattice Boltzmann algorithms. Commun. Comput. Phys. 4, 624–646 (2008).

    Google Scholar 

Download references

Acknowledgements

The author’s research is supported by an Advanced Research Fellowship from the Engineering and Physical Sciences Research Council [grant number EP/E054625/1].

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dellar, P.J. (2013). Moment-Based Boundary Conditions for Lattice Boltzmann Magnetohydrodynamics. In: Cangiani, A., Davidchack, R., Georgoulis, E., Gorban, A., Levesley, J., Tretyakov, M. (eds) Numerical Mathematics and Advanced Applications 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33134-3_9

Download citation

Publish with us

Policies and ethics