Skip to main content

A Special Multiwavelet Basis for Unbounded Product Domains

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications 2011
  • 2002 Accesses

Abstract

A multiwavelet basis construction for the interval (0, 1) with the special property that the corresponding wavelet discretization of second order constant coefficient differential operators is sparse, is extended to the realline \(\mathbb{R}\) and the half-space \(\mathbb{R}_{+}\). The advantage of these new bases is their very convenient usage within adaptive wavelet schemes applied to operator problems on unbounded domains as performance of these schemes is increased while their implementation is facilitated. The construction is explained and underlined by selected numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Z. Boulmezaoud. Inverted finite elements: A new method for solving elliptic problems in unbounded domains. ESAIM: M2AN, 39(1), 109–145 (2005).

    Google Scholar 

  2. A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comp., 70(233), 27–75 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet methods II – beyond the elliptic case. Found. Comput. Math., 2, 203–245 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Chegini, S. Dahlke, U. Friedrich and R. Stevenson. Piecewise tensor product wavelet bases by extensions and approximation rates. Preprint (2012).

    Google Scholar 

  5. N. Chegini and R. Stevenson. The adaptive tensor product wavelet scheme: Sparse matrices and the application to singularly perturbed problems. IMA J. Numer. Anal., 32(1), 75–104 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Dahmen and R. Stevenson. Element-by-element construction of wavelets satisfying stability and moment conditions. SIAM J. Numer. Anal., 37(1), 319–352 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Dijkema and R. Stevenson. A sparse Laplacian in tensor product wavelet coordinates. Numer. Math., 115, 433–449 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Gantumur, H. Harbrecht, and R. Stevenson. An optimal adaptive wavelet method without coarsening of the iterands. Math. Comp., 76(258), 615–629 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Griebel and P. Oswald. Tensor product type subspace splitting and multilevel iterative methods for anisotropic problems. Adv. Comput. Math., 4, 171–206 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Kestler. Adaptive wavelet methods for multi-dimensional problems in numerical finance. PhD thesis (in preparation).

    Google Scholar 

  11. S. Kestler and K. Urban. Adaptive wavelet methods on unbounded domains. J. Sci. Comp., 53(2), 342–376 (2012).

    Article  MathSciNet  Google Scholar 

  12. C. Schwab and R. Stevenson. Adaptive wavelet algorithms for elliptic PDE’s on product domains. Math. Comp., 77(261), 71–92 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Sickel and T. Ullrich. Tensor products of Sobolev-Besov spaces and applications to approximation from the hyperbolic cross. J. Approx. Theory, 161, 748–786 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Stippler. LAWA – Library for Adaptive Wavelet Applications. http://lawa.sourceforge.net (2009).

  15. K. Urban. Wavelet methods for elliptic partial differential equations. Oxford University Press (2009).

    Google Scholar 

Download references

Acknowledgements

The author is grateful to the DFG Research Training Group 1100 for financial support and would like to thank his PhD advisor Prof. Dr. Karsten Urban.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kestler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kestler, S. (2013). A Special Multiwavelet Basis for Unbounded Product Domains. In: Cangiani, A., Davidchack, R., Georgoulis, E., Gorban, A., Levesley, J., Tretyakov, M. (eds) Numerical Mathematics and Advanced Applications 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33134-3_20

Download citation

Publish with us

Policies and ethics