Skip to main content

Multilevel Sparse Kernel-Based Interpolation Using Conditionally Positive Definite Radial Basis Functions

  • Conference paper
  • First Online:
  • 2159 Accesses

Abstract

A multilevel sparse kernel-based interpolation (MLSKI) method, suitable for moderately high-dimensional function interpolation problems has been recently proposed in (Georgoulis et al. Multilevel sparse kernel-based interpolation, submitted for publication). The method uses both level-wise and direction-wise multilevel decomposition of structured or mildly unstructured interpolation data sites in conjunction with the application of kernel-based interpolants with different scaling in each direction. The multilevel interpolation algorithm is based on a hierarchical decomposition of the data sites, whereby at each level the detail is added to the interpolant by interpolating the resulting residual of the previous level. On each level, anisotropic radial basis functions (RBFs) are used for solving a number of small interpolation problems, which are subsequently linearly combined to produce the interpolant. Here, we investigate the use of conditionally positive definite RBFs within the MLSKI setting, thus extending the results from (Georgoulis et al. Multilevel sparse kernel-based interpolation, submitted for publication), where (strictly) positive definite RBFs are used only.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K. I. Babenko. Approximation by trigonometric polynomials in a certain class of periodic functions of several variables. Soviet Math. Dokl., 1:672–675, 1960.

    MathSciNet  MATH  Google Scholar 

  2. R. Beatson, O. Davydov, and J. Levesley. Error bounds for anisotropic RBF interpolation. J. Approx. Theory, 162(3):512–527, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. K. Beatson, J. B. Cherrie, and C. T. Mouat. Fast fitting of radial basis functions: methods based on preconditioned GMRES iteration. Adv. Comput. Math., 11(2–3):253–270, 1999. Radial basis functions and their applications.

    Google Scholar 

  4. H.-J. Bungartz, M. Griebel, and U. Rüde. Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems. Comput. Methods Appl. Mech. Engrg., 116(1–4):243–252, 1994. ICOSAHOM’92 (Montpellier, 1992).

    Google Scholar 

  5. G. Casciola, D. Lazzaro, L. B. Montefusco, and S. Morigi. Shape preserving surface reconstruction using locally anisotropic radial basis function interpolants. Comput. Math. Appl., 51(8):1185–1198, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Casciola, L. B. Montefusco, and S. Morigi. The regularizing properties of anisotropic radial basis functions. Appl. Math. Comput., 190(2):1050–1062, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  7. F.-J. Delvos. d-variate Boolean interpolation. J. Approx. Theory, 34:99–114, 1982.

    Google Scholar 

  8. G. E. Fasshauer and Mccourt M. J. Stable evaluation of Gaussian RBF interpolants. Submitted for publication, 2011.

    Google Scholar 

  9. A. C. Faul and M. J. D. Powell. Proof of convergence of an iterative technique for thin plate spline interpolation in two dimensions. Adv. Comput. Math., 11:183–192, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. S. Floater and A. Iske. Multistep scattered data interpolation using compactly supported radial basis functions. J. Comput. Appl. Math., 73(1–2):65–78, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Fornberg, E. Larsson, and N. Flyer. Stable computation with Gaussian radial basis functions. SIAM J. Sci. Comput., 33(2):869–892, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Fornberg and C. Piret. A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput., 30(1):60–80, 2007/08.

    Google Scholar 

  13. B. Fornberg and G. Wright. Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl., 48(5–6):853–867, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Garcke and M. Griebel. On the parallelization of the sparse grid approach for data mining. In S. Margenov, J. Wasniewski, and P. Yalamov, editors, Large-Scale Scientific Computations, Third International Conference, LSSC 2001, Sozopol, Bulgaria, volume 2179 of Lecture Notes in Computer Science, pages 22–32. Springer, 2001. also as SFB 256 Preprint 721, Universität Bonn, 2001.

    Google Scholar 

  15. E. H. Georgoulis, J. Levesley, and F. Subhan. Multilevel sparse kernel-based interpolation. submitted for publication.

    Google Scholar 

  16. M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solution of sparse grid problems. In Iterative methods in linear algebra (Brussels, 1991), pages 263–281. North-Holland, Amsterdam, 1992.

    Google Scholar 

  17. S. J. Hales and J. Levesley. Error estimates for multilevel approximation using polyharmonic splines. Numer. Algorithms, 30(1):1–10, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  18. Markus Hegland, Jochen Garcke, and Vivien Challis. The combination technique and some generalisations. Linear Algebra Appl., 420(2–3):249–275, 2007.

    Google Scholar 

  19. A. R. H. Heryudono and T. A. Driscoll, Radial basis function interpolation on irregular domain through conformal transplantation, J. Sci. Comput., 44 (2010), pp. 286–300.

    Google Scholar 

  20. A. Iske. Hierarchical scattered data filtering for multilevel interpolation schemes. In Mathematical methods for curves and surfaces (Oslo, 2000), Innov. Appl. Math., pages 211–221. Vanderbilt Univ. Press, Nashville, TN, 2001.

    Google Scholar 

  21. A. Iske and J. Levesley. Multilevel scattered data approximation by adaptive domain decomposition. Numer. Algorithms, 39(1–3):187–198, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Schaback. Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math., 3(3):251–264, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Schreiber. The method of Smolyak in multivariate interpolation. PhD thesis, der Mathematisch-Naturwissenschaftlichen Fakultäten, der Georg-August-Universität zu Göttingen, 2000.

    Google Scholar 

  24. W. Sickel and F. Sprengel. Interpolation on sparse grids and tensor products of Nikolskij-Besov spaces. J. Comput. Anal. Appl., 1(3):263–288, 1999. Dedicated to Professor Paul L. Butzer on the occasion of his 70th birthday.

    Google Scholar 

  25. S. A. Smolyak. Quadrature and interpolation of formulas for tensor product of certian classes of functions. Soviet Math. Dokl., 4:240–243, 1963.

    Google Scholar 

  26. F. Subhan. Multilevel sparse kernel-based interpolation. Ph.D. Thesis, University of Leicester, 2011.

    Google Scholar 

  27. V. N. Temlyakov. Approximation of functions with bounded mixed derivative. In Proc. Steklov Institute Math, 1989. AMS, 1989.

    Google Scholar 

  28. H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math., 4:389–396, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Wendland. Scattered data approximation, volume 17 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2005.

    Google Scholar 

  30. Z. Wu. Compactly supported positive definite radial functions. Adv. Comput. Math., 4:283–292, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Zenger. Sparse grids. In Parallel algorithms for partial differential equations (Kiel, 1990), volume 31 of Notes Numer. Fluid Mech., pages 241–251. Vieweg, Braunschweig, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. H. Georgoulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Georgoulis, E.H., Levesley, J., Subhan, F. (2013). Multilevel Sparse Kernel-Based Interpolation Using Conditionally Positive Definite Radial Basis Functions. In: Cangiani, A., Davidchack, R., Georgoulis, E., Gorban, A., Levesley, J., Tretyakov, M. (eds) Numerical Mathematics and Advanced Applications 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33134-3_17

Download citation

Publish with us

Policies and ethics