Modular Heap Analysis for Higher-Order Programs

  • Ravichandhran Madhavan
  • G. Ramalingam
  • Kapil Vaswani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7460)

Abstract

We consider the problem of computing summaries for procedures that soundly capture the effect of calling a procedure on program state that includes a mutable heap. Such summaries are the basis for a compositional program analysis and key to scalability. Higher order procedures contain callbacks (indirect calls to procedures specified by callers). The use of such callbacks and higher-order features are becoming increasingly widespread and commonplace even in mainstream imperative languages such as C# and Java. Such callbacks complicate compositional analysis and the construction of procedure summaries. We present an abstract-interpretation based approach to computing summaries (of a procedure’s effect on a mutable heap) in the presence of callbacks in a simple imperative language. We present an empirical evaluation of our approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cousot, P., Cousot, R.: Modular Static Program Analysis. In: CC 2002. LNCS, vol. 2304, pp. 159–179. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Grove, D., DeFouw, G., Dean, J., Chambers, C.: Call graph construction in object-oriented languages. In: OOPSLA, pp. 108–124 (1997)Google Scholar
  3. 3.
    Lattner, C., Lenharth, A., Adve, V.S.: Making context-sensitive points-to analysis with heap cloning practical for the real world. In: PLDI, pp. 278–289 (2007)Google Scholar
  4. 4.
    Madhavan, R., Ramalingam, G., Vaswani, K.: Purity Analysis: An Abstract Interpretation Formulation. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 7–24. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Madhavan, R., Ramalingam, G., Vaswani, K.: Purity analysis: An abstract interpretation formulation. Tech. rep., Microsoft Research (2011)Google Scholar
  6. 6.
    Might, M., Smaragdakis, Y., Horn, D.V.: Resolving and exploiting the k-cfa paradox: Illuminating functional vs. object-oriented program analysis. In: PLDI, Toronto, Canada, pp. 305–315 (June 2010)Google Scholar
  7. 7.
    Rountev, A., Kagan, S., Marlowe, T.: Interprocedural Dataflow Analysis in the Presence of Large Libraries. In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 2–16. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Sălcianu, A., Rinard, M.: Purity and Side Effect Analysis for Java Programs. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199–215. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Shivers, O.G.: Control-Flow Analysis of Higher-Order Languages or Taming Lambda. Ph.D. thesis, Carnegie-Mellon Univeristy (May 1991)Google Scholar
  10. 10.
    Vivien, F., Rinard, M.: Incrementalized pointer and escape analysis. In: PLDI, pp. 35–46 (2001)Google Scholar
  11. 11.
    Whaley, J., Rinard, M.C.: Compositional pointer and escape analysis for java programs. In: OOPSLA, pp. 187–206 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ravichandhran Madhavan
    • 1
  • G. Ramalingam
    • 1
  • Kapil Vaswani
    • 1
  1. 1.Microsoft ResearchIndia

Personalised recommendations