Skip to main content

Hidden Breakpoints in Genome Alignments

  • Conference paper
Algorithms in Bioinformatics (WABI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7534))

Included in the following conference series:

  • 2206 Accesses

Abstract

During the course of evolution, an organism’s genome can undergo changes that affect the large-scale structure of the genome. These changes include gene gain, loss, duplication, chromosome fusion, fission, and rearrangement. When gene gain and loss occurs in addition to other types of rearrangement, breakpoints of rearrangement can exist that are only detectable by comparison of three or more genomes. An arbitrarily large number of these “hidden” breakpoints can exist among genomes that exhibit no rearrangements in pairwise comparisons.

We present an extension of the multichromosomal breakpoint median problem to genomes that have undergone gene gain and loss. We then demonstrate that the median distance among three genomes can be used to calculate a lower bound on the number of hidden breakpoints present. We provide an implementation of this calculation including the median distance, along with some practical improvements on the time complexity of the underlying algorithm.

We apply our approach to measure the abundance of hidden breakpoints in simulated data sets under a wide range of evolutionary scenarios. We demonstrate that in simulations the hidden breakpoint counts depend strongly on relative rates of inversion and gene gain/loss. Finally we apply current multiple genome aligners to the simulated genomes, and show that all aligners introduce a high degree of error in hidden breakpoint counts, and that this error grows with evolutionary distance in the simulation. Our results suggest that hidden breakpoint error may be pervasive in genome alignments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angiuoli, S.V., Salzberg, S.L.: Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics 27(3), 334–342 (2011)

    Article  Google Scholar 

  2. Blanchette, M., Kent, W.J., Riemer, C., Elnitski, L., Smit, A.F.A., Roskin, K.M., Baertsch, R., Rosenbloom, K., Clawson, H., Green, E.D., Haussler, D., Miller, W.: Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 14(4), 708–715 (2004)

    Article  Google Scholar 

  3. Darling, A.C.E., Mau, B., Blattner, F.R., Perna, N.T.: Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14(7), 1394–1403 (2004)

    Article  Google Scholar 

  4. Darling, A.E., Mau, B., Perna, N.T.: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5(6), 11147 (2010)

    Article  Google Scholar 

  5. De, S., Michor, F.: DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes. Nat. Biotechnol. 29(12), 1103–1108 (2011)

    Article  Google Scholar 

  6. Delcher, A.L., Phillippy, A., Carlton, J., Salzberg, S.L.: Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 30(11), 2478–2483 (2002)

    Article  Google Scholar 

  7. Fudenberg, G., Getz, G., Meyerson, M., Mirny, L.A.: High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nat. Biotechnol. 29(12), 1109–1113 (2011)

    Article  Google Scholar 

  8. Greenman, C.D., Pleasance, E.D., Newman, S., Yang, F., Fu, B., Nik-Zainal, S., Jones, D., Lau, K.W., Carter, N., Edwards, P.A.W., Futreal, P.A., Stratton, M.R., Campbell, P.J.: Estimation of rearrangement phylogeny for cancer genomes. Genome Res. 22(2), 346–361 (2012)

    Article  Google Scholar 

  9. Kolmogorov, V.: Blossom V: a new implementation of a minimum cost perfect matching algorithm. Mathematical Programming Computation 1, 43–67 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Medini, D., Donati, C., Tettelin, H., Masignani, V., Rappuoli, R.: The microbial pan-genome. Curr. Opin. Genet. Dev. 15(6), 589–594 (2005)

    Article  Google Scholar 

  11. Nowacki, M., Shetty, K., Landweber, L.F.: RNA-mediated epigenetic programming of genome rearrangements. Annu. Rev. Genomics Hum. Genet. 12, 367–389 (2011)

    Article  Google Scholar 

  12. Rambaut, A., Grassly, N.C.: Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput. Appl. Biosci. 13(3), 235–238 (1997)

    Google Scholar 

  13. Schwartz, S., Kent, W.J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R.C., Haussler, D., Miller, W.: Human–mouse alignments with BLASTZ. Genome Res. 13(1), 103–107 (2003)

    Article  Google Scholar 

  14. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under different genomic distances. BMC Bioinformatics 10, 120 (2009)

    Article  Google Scholar 

  15. Umbarger, M.A., Toro, E., Wright, M.A., Porreca, G.J., Ba, D., Hong, S.H., Fero, M.J., Zhu, L.J., Marti-Renom, M.A., McAdams, H.H., Shapiro, L., Dekker, J., Church, G.M.: The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol. Cell. 44(2), 252–264 (2011)

    Article  Google Scholar 

  16. Zhang, Y., Hu, F., Tang, J.: Phylogenetic reconstruction with gene rearrangements and gene losses. In: Park, T., Tsui, S.K.W., Chen, L., Ng, M.K., Wong, L., Hu, X. (eds.) BIBM, pp. 35–38. IEEE Computer Society (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kehr, B., Reinert, K., Darling, A.E. (2012). Hidden Breakpoints in Genome Alignments. In: Raphael, B., Tang, J. (eds) Algorithms in Bioinformatics. WABI 2012. Lecture Notes in Computer Science(), vol 7534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33122-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33122-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33121-3

  • Online ISBN: 978-3-642-33122-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics