Skip to main content

Resolving Spatial Inconsistencies in Chromosome Conformation Data

  • Conference paper
Book cover Algorithms in Bioinformatics (WABI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7534))

Included in the following conference series:

Abstract

We introduce a new method for filtering noisy 3C interactions that selects subsets of interactions that obey metric constraints of various strictness. We demonstrate that, although the problem is computationally hard, near-optimal results are often attainable in practice using well-designed heuristics and approximation algorithms. Further, we show that, compared with a standard technique, this metric filtering approach leads to (a) subgraphs with higher total statistical significance, (b) lower embedding error, (c) lower sensitivity to initial conditions of the embedding algorithm, and (d)  structures with better agreement with light microscopy measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baù, D., et al.: The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nat. Struct. & Mol. Biol. 18(1), 107–114 (2010)

    Article  MathSciNet  Google Scholar 

  2. Dekker, J., et al.: Capturing chromosome conformation. Science 295(5558), 1306–1311 (2002)

    Article  Google Scholar 

  3. Duan, Z., et al.: A three-dimensional model of the yeast genome. Nature 465(7296), 363–367 (2010)

    Article  Google Scholar 

  4. Fudenberg, G., et al.: High-order chromatin architecture determines the landscape of chromosomal alterations in cancer. Nat. Biotechnol. 29(12), 1109–1113 (2011), http://www.ncbi.nlm.nih.gov/pubmed/22101486 , doi:10.1038/nbt.2049

    Article  Google Scholar 

  5. Gomes, C., Williams, R.: Approximation algorithms. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, ch. 18. Springer (2005)

    Google Scholar 

  6. Hochbaum, D.S. (ed.): Approximation algorithms for NP-hard problems. PWS Publishing Co, Boston (1997)

    Google Scholar 

  7. Kalhor, R., et al.: Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol. 30(1), 90–98 (2012)

    Article  Google Scholar 

  8. Lieberman-Aiden, E., et al.: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950), 289–293 (2009)

    Article  Google Scholar 

  9. Marti-Renom, M.A., Mirny, L.A.: Bridging the resolution gap in structural modeling of 3D genome organization. PLoS Comput. Biol. 7(7), 1002125 (2011)

    Article  Google Scholar 

  10. Niedermeier, R., Rossmanith, P.: An efficient fixed-parameter algorithm for 3-hitting set. Journal of Discrete Algorithms 1(1), 89–102 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rousseau, M., et al.: Three-dimensional modeling of chromatin structure from interaction frequency data using Markov chain Monte Carlo sampling. BMC Bioinformatics 12(1), 414 (2011)

    Article  MathSciNet  Google Scholar 

  12. Saxe, J.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)

    Google Scholar 

  13. Sexton, T., et al.: Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148(3), 458–472 (2012)

    Article  Google Scholar 

  14. Tanizawa, H., et al.: Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nuc. Acids Res. 38(22), 8164–8177 (2010)

    Article  Google Scholar 

  15. Theobald, D.L., Wuttke, D.S.: THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures. Bioinformatics 22(17), 2171–2172 (2006)

    Article  Google Scholar 

  16. Therizols, P., et al.: Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres. Proc. Natl. Acad. Sci. USA 107(5), 2025–2030 (2010)

    Article  Google Scholar 

  17. Umbarger, M.A., et al.: The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol. Cell 44(2), 252–264 (2011)

    Article  Google Scholar 

  18. Yaffe, E., Tanay, A.: Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nature Genetics 43(11), 1059–1065 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duggal, G. et al. (2012). Resolving Spatial Inconsistencies in Chromosome Conformation Data. In: Raphael, B., Tang, J. (eds) Algorithms in Bioinformatics. WABI 2012. Lecture Notes in Computer Science(), vol 7534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33122-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33122-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33121-3

  • Online ISBN: 978-3-642-33122-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics