Skip to main content

How Accurately Can We Model Protein Structures with Dihedral Angles?

  • Conference paper
Book cover Algorithms in Bioinformatics (WABI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7534))

Included in the following conference series:

  • 2241 Accesses

Abstract

Previous study shows that the same type of bond lengths and angles fit Gaussian distributions well with small standard deviations on high resolution protein structure data. The mean values of these Gaussian distributions have been widely used as ideal bond lengths and angles in bioinformatics. However, we are not aware of any research work done to evaluate how accurately we can model protein structures with dihedral angles and ideal bond lengths and angles.

In this paper, we first introduce the protein structure idealization problem. Then, we develop a fast O(nm / ε) dynamic programming algorithm to find an approximately optimal idealized protein backbone structure according to our scoring function. Consequently, we demonstrate that idealized backbone structures always exist with small changes and significantly better free energy. We also apply our algorithm to refine protein pseudo-structures determined in NMR experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Engh, R.A., Huber, R.: Accurate bond and angle parameters for x-ray protein structure refinement. Acta Crystallographica Section A 47, 392–400 (1991)

    Article  Google Scholar 

  2. Engh, R.A., Huber, R.: Structure quality and target parameters. In: International Tables for Crystallography. International Union of Crystallograph, vol. F, 18.3, pp. 382–416 (2006)

    Google Scholar 

  3. Güntert, P., Wüthrich, K.: Improved efficiency of protein structure calculations from nmr data using the program diana with redundant dihedral angle constraints. J. Biomol. NMR 1(4), 447–456 (1991)

    Article  Google Scholar 

  4. Güntert, P., Mumenthaler, C., Wüthrich, K.: Torsion angle dynamics for nmr structure calculation with the new program dyana. Journal of Molecular Biology 273(1), 283–298 (1997)

    Article  Google Scholar 

  5. Simons, K.T., Kooperberg, C., Huang, E., Baker, D.: Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268(1), 209–225 (1997)

    Article  Google Scholar 

  6. Simons, K.T., Strauss, C., Baker, D.: Prospects for ab initio protein structural genomics. J. Mol. Biol. 306, 1191–1199 (2001)

    Article  Google Scholar 

  7. Li, S.C., Bu, D., Xu, J., Li, M.: Fragment-HMM: a new approach to protein structure prediction. Protein Science 17(11), 1925–1934 (2008)

    Article  Google Scholar 

  8. Canutescu, A.A., Shelenkov, A.A., Dunbrack, R.L.: A graph-theory algorithm for rapid protein side-chain prediction. Protein Science 12(9), 2001–2014 (2003)

    Article  Google Scholar 

  9. Krivov, G.G., Shapovalov, M.V., Dunbrack, R.L.: Improved prediction of protein side-chain conformations with SCWRL4. Proteins: Structure, Function, and Bioinformatics 77(4), 778–795 (2009)

    Article  Google Scholar 

  10. Kuszewski, J., Gronenborn, A.M., Clore, G.M.: Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases. Protein Sci. 5(6), 1067–1080 (1996)

    Article  Google Scholar 

  11. Kuszewski, J., Gronenborn, A.M., Clore, G.M.: Improvements and extensions in the conformational database potential for the refinement of NMR and x-ray structures of proteins and nucleic acids. Journal of Magnetic Resonance 125(1), 171–177 (1997)

    Article  Google Scholar 

  12. Rice, L.M., Brünger, A.T.: Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement. Proteins: Structure, Function, and Genetics 19(4), 277–290 (1994)

    Article  Google Scholar 

  13. Stein, E.G., Rice, L.M., Brünger, A.T.: Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J. Magn. Reson. 124, 154–164 (1997)

    Article  Google Scholar 

  14. Dunbrack, R.L., Cohen, F.E.: Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Sci. 6(8), 1661–1681 (1997)

    Article  Google Scholar 

  15. Evans, P.R.: An introduction to stereochemical restraints. Acta Crystallographica Section D 63(1), 58–61 (2007)

    Article  Google Scholar 

  16. Jaskolski, M., Gilski, M., Dauter, Z., Wlodawer, A.: Stereochemical restraints revisited: how accurate are refinement targets and how much should protein structures be allowed to deviate from them? Acta Crystallographica Section D 63(5), 611–620 (2007)

    Article  Google Scholar 

  17. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  18. Wang, G., Dunbrack, R.L.: Pisces: a protein sequence culling server. Bioinformatics 19(12), 1589–1591 (2003)

    Article  Google Scholar 

  19. Wang, G., Dunbrack, R.L.: Pisces: recent improvements to a pdb sequence culling server. Nucleic Acids Research 33(Web-Server-Issue), 94–98 (2005)

    Article  Google Scholar 

  20. Yang, Y., Zhou, Y.: Ab initio folding of terminal segments with secondary structures reveals the fine difference between two closely related all-atom statistical energy functions. Protein Sci. 17(7), 1212–1219 (2008)

    Article  Google Scholar 

  21. Yang, Y., Zhou, Y.: Specific interactions for ab initio folding of protein terminal regions with secondary structures. Proteins 72(2), 793–803 (2008)

    Article  Google Scholar 

  22. Lattman, E., Loll, P.J., Loll, P.: Protein crystallography: a concise guide. In: Protein Crystallography. Johns Hopkins University Press (2008)

    Google Scholar 

  23. Rutgers, UCSD: Protein data bank contents guide (July 2011), http://www.wwpdb.org/documentation/format33/v3.3.html

  24. Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M.: PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 26(2), 283–291 (1993)

    Article  Google Scholar 

  25. Jung, J.W., Yee, A., Wu, B., Arrowsmith, C.H., Lee, W.: Solution structure of YKR049C, a putative redox protein from Saccharomyces cerevisiae. J. Biochem. Mol. Biol. 38(5), 500–504 (2005)

    Article  Google Scholar 

  26. Xu, J.: Rapid Protein Side-Chain Packing via Tree Decomposition. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 423–439. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  27. Xu, J., Jiao, F., Berger, B.: A tree-decomposition approach to protein structure prediction. In: Proc. IEEE Comput. Syst. Bioinform. Conf., pp. 247–256 (2005)

    Google Scholar 

  28. Xu, Y., Xu, D.: Protein threading using PROSPECT: Design and evaluation. Proteins: Structure, Function, and Genetics 40(3), 343–354 (2000)

    Article  Google Scholar 

  29. Kim, D., Xu, D., Guo, J.T., Ellrott, K., Xu, Y.: PROSPECT II: protein structure prediction program for genome-scale applications. Protein Engineering 16(9), 641–650 (2003)

    Article  Google Scholar 

  30. Hooft, R.W.W., Vriend, G., Sander, C., Abola, E.E.: Errors in protein structures. Nature 381(6580), 272 (1996)

    Article  Google Scholar 

  31. Joosten, R.P., Joosten, K., Cohen, S.X., Vriend, G., Perrakis, A.: Automatic rebuilding and optimization of crystallographic structures in the Protein Data Bank. Bioinformatics 27(24), 3392–3398 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cui, X., Li, S.C., Bu, D., Alipanahi Ramandi, B., Li, M. (2012). How Accurately Can We Model Protein Structures with Dihedral Angles?. In: Raphael, B., Tang, J. (eds) Algorithms in Bioinformatics. WABI 2012. Lecture Notes in Computer Science(), vol 7534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33122-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33122-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33121-3

  • Online ISBN: 978-3-642-33122-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics