Skip to main content

Succinct de Bruijn Graphs

  • Conference paper
Algorithms in Bioinformatics (WABI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7534))

Included in the following conference series:

Abstract

We propose a new succinct de Bruijn graph representation. If the de Bruijn graph of k-mers in a DNA sequence of length N has m edges, it can be represented in 4m + o(m) bits. This is much smaller than existing ones. The numbers of outgoing and incoming edges of a node are computed in constant time, and the outgoing and incoming edge with given label are found in constant time and \(\mathcal{O}(k)\) time, respectively. The data structure is constructed in \(\mathcal{O}(Nk \log m/\log\log m)\) time using no additional space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batzoglou, S., Jaffe, D.B., Stanley, K., Butler, J., Gnerre, S., Mauceli, E., Berger, B., Mesirov, J.P., Lander, E.S.: Arachne: a whole-genome shotgun assembler. Genome Research 12, 177–189 (2002)

    Article  Google Scholar 

  2. De Bruijn, N.G.: A combinatorial problem. Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758–764 (1946)

    MATH  Google Scholar 

  3. Burrows, M., Wheeler, D.J.: A Block-sorting Lossless Data Compression Algorithms. Technical Report 124, Digital SRC Research Report (1994)

    Google Scholar 

  4. Cleary, J.G., Witten, I.H.: Data Compression Using Adaptive Coding and Partial String Matching. IEEE Trans. on Commun. COM-32(4), 396–402 (1984)

    Google Scholar 

  5. Conway, T.C., Bromage, A.J.: Succinct data structures for assembling large genomes. Bioinformatics 27(4), 479–486 (2011)

    Article  Google Scholar 

  6. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and indexing labeled trees, with applications. Journal of the ACM 57(1), 4:1–4:33 (2009)

    Google Scholar 

  7. Ferragina, P., Manzini, G.: Indexing compressed texts. Journal of the ACM 52(4), 552–581 (2005)

    Article  MathSciNet  Google Scholar 

  8. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed Representations of Sequences and Full-Text Indexes. ACM Transactions on Algorithms 3(2(20)) (2006)

    Google Scholar 

  9. Huang, X., Yang, S.P.: Generating a genome assembly with pcap. Current Protocols in Bioinformatics Unit 11.3 (2005)

    Google Scholar 

  10. Kasahara, M., Morishita, S.: Large-Scale Genome Sequence Processing. Imperial College Press (2006)

    Google Scholar 

  11. Li, R., Zhu, H., Ruan, J., Qjan, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G., Kristiansen, K.: H Yang, and J. Wang. De novo assembly of human genomes with massively parallel short read sequencing. Genome Research 20, 265–272 (2009)

    Article  Google Scholar 

  12. MacCallum, I., Przybylski, D., Gnerre, S., Burton, J., Shlyakhter, I., Gnirke, A., Malek, J., McKernan, K., Ranade, S., Shea, T.P., Williams, L., Young, S., Nusbaum, C., Jaffe, D.B.: Allpaths 2: small genomes assembled accurately and with high continuity from short paired reads. Genome Biology 10(R103) (2009)

    Google Scholar 

  13. Miller, J.R., Koren, S., Sutton, G.: Assembly algorithms for next-generation sequencing data. Genomics 95, 315–327 (2010)

    Article  Google Scholar 

  14. Myers, E.W.: Toward simplifying and accurately formulating fragment assembly. Journal of Comutational Biology 2, 275–290 (1995)

    Article  Google Scholar 

  15. Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., Flanigan, M.J., Kravitz, S.A., Mobarry, C.M., Reinert, K.H.J., Remington, K.A., Anson, E.L., Bolanos, R.A., Chou, H., Jordan, C.M., Halpern, A.L., Lonardi, S., Beasley, E.M., Brandon, R.C., Chen, L., Dunn, P.J., Lai, Z., Liang, Y., Nusskern, D.R., Zhan, M., Zhang, Q., Zheng, X., Rubin, G.M., Adams, M.D., Venter, J.C.: A whole-genome assembly of drosophila. Science 287, 2196–2204 (2000)

    Article  Google Scholar 

  16. Navarro, G., Sadakane, K.: Fully-functional static and dynamic succinct trees. Submitted for Journal Publication (2010). A preliminary version appeared In: Proc. ACM-SIAM SODA, pp. 134–149 (2010), http://arxiv.org/abs/0905.0768

  17. Okanohara, D., Sadakane, K.: Practical Entropy-Compressed Rank/ Select Dictionary. In: Proc. of Workshop on Algorithm Engineering and Experiments, ALENEX (2007)

    Google Scholar 

  18. Pevzner, P.A., Tang, H., Waterman, M.S.: An eulerian path approach to dna fragment assembly. Proceedings of the National Academy of Sciences 98, 9748–9753 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pop, M.: Genome assembly reborn: recent computational challenges. Briefings in Bioinformatics 10(4), 354–366 (2009)

    Article  Google Scholar 

  20. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms 3(4) (November 2007)

    Google Scholar 

  21. Sahli, M., Shibuya, T.: Arapan-s: a fast and highly accurate whole-genome assembly software for viruses and small genomes. BMC Research Notes (in press)

    Google Scholar 

  22. Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J.: Abyss: a parallel assembler for short read sequence data. Genome Research 19, 1117–1123 (2009)

    Article  Google Scholar 

  23. Ye, C., Ma, Z.S., Cannon, C.H., Pop, M., Yu, D.W.: Exploiting sparseness in de novo genome assembly. BMC Bioinformatics 13(suppl. 6:S1) (2012)

    Google Scholar 

  24. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using de bruijn graphs. Genome Research 18, 821–829 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bowe, A., Onodera, T., Sadakane, K., Shibuya, T. (2012). Succinct de Bruijn Graphs. In: Raphael, B., Tang, J. (eds) Algorithms in Bioinformatics. WABI 2012. Lecture Notes in Computer Science(), vol 7534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33122-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33122-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33121-3

  • Online ISBN: 978-3-642-33122-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics