Skip to main content

Improved Lower Bounds on the Compatibility of Quartets, Triplets, and Multi-state Characters

  • Conference paper
Book cover Algorithms in Bioinformatics (WABI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7534))

Included in the following conference series:

  • 2148 Accesses

Abstract

We study a long standing conjecture on the necessary and sufficient conditions for the compatibility of multi-state characters: There exists a function f(r) such that, for any set C of r-state characters, C is compatible if and only if every subset of f(r) characters of C is compatible. We show that for every r ≥ 2, there exists an incompatible set C of \(\lfloor\frac{r}{2}\rfloor\cdot\lceil\frac{r}{2}\rceil + 1\) r-state characters such that every proper subset of C is compatible. Thus, \(f(r) \ge \lfloor\frac{r}{2}\rfloor\cdot\lceil\frac{r}{2}\rceil + 1\) for every r ≥ 2. This improves the previous lower bound of f(r) ≥ r given by Meacham (1983), and generalizes the construction showing that f(4) ≥ 5 given by Habib and To (2011). We prove our result via a result on quartet compatibility that may be of independent interest: For every integer n ≥ 4, there exists an incompatible set Q of \(\lfloor\frac{n-2}{2}\rfloor\cdot\lceil\frac{n-2}{2}\rceil + 1\) quartets over n labels such that every proper subset of Q is compatible. We contrast this with a result on the compatibility of triplets: For every n ≥ 3, if R is an incompatible set of more than n − 1 triplets over n labels, then some proper subset of R is incompatible. We show this bound is tight by exhibiting, for every n ≥ 3, a set of n − 1 triplets over n taxa such that R is incompatible, but every proper subset of R is compatible.

This work was supported in part by the National Science Foundation under grants CCF-1017189 and DEB-0829674.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwala, R., Fernández-Baca, D.: A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM Journal on Computing 23(6), 1216–1224 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM Journal on Computing 10(3), 405–421 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H., Fellows, M., Warnow, T.: Two Strikes against Perfect Phylogeny. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  4. Bryant, D., Steel, M.: Extension operations on sets of leaf-labelled trees. Advances in Applied Mathematics 16, 425–453 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buneman, P.: The recovery of trees from measurements of dissimilarity. In: Mathematics in the Archeological and Historical Sciences, pp. 387–395. Edinburgh University Press (1971)

    Google Scholar 

  6. Colonius, H., Schulze, H.H.: Tree structures for proximity data. British Journal of Mathematical and Statistical Psychology 34(2), 167–180 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dekker, M.C.H.: Reconstruction Methods for Derivation Trees. Master’s thesis, Vrije Universiteit, Amsterdam, Netherlands (1986)

    Google Scholar 

  8. Dietrich, M., McCartin, C., Semple, C.: Bounding the maximum size of a minimal definitive set of quartets. Information Processing Letters 112(16), 651–655 (2012)

    Article  MathSciNet  Google Scholar 

  9. Dress, A., Steel, M.: Convex tree realizations of partitions. Applied Mathematics Letters 5(3), 3–6 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Estabrook, G.F., Johnson, J., McMorris, F.R.: A mathematical foundation for the analysis of cladistic character compatibility. Mathematical Biosciences 29(1-2), 181–187 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fernández-Baca, D.: The Perfect Phylogeny Problem. In: Steiner Trees in Industry, pp. 203–234. Kluwer (2001)

    Google Scholar 

  12. Fitch, W.M.: Toward finding the tree of maximum parsimony. In: Proceedings of the 8th International Conference on Numerical Taxonomy, pp. 189–230 (1975)

    Google Scholar 

  13. Fitch, W.M.: On the problem of discovering the most parsimonious tree. The American Naturalist 111(978), 223–257 (1977)

    Article  Google Scholar 

  14. Grünewald, S., Huber, K.T.: Identifying and defining trees. In: Gascuel, O., Steel, M. (eds.) Reconstructing Evolution: New Mathematical and Computational Advances. Oxford University Press (2007)

    Google Scholar 

  15. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21(1), 19–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Habib, M., To, T.H.: On a Conjecture about Compatibility of Multi-states Characters. In: Przytycka, T.M., Sagot, M.-F. (eds.) WABI 2011. LNCS, vol. 6833, pp. 116–127. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Kannan, S., Warnow, T.: Inferring Evolutionary History From DNA Sequences. SIAM Journal on Computing 23(4), 713–737 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kannan, S., Warnow, T.: A fast algorithm for the computation and enumeration of perfect phylogenies. SIAM Journal on Computing 26(6), 1749–1763 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lam, F., Gusfield, D., Sridhar, S.: Generalizing the Splits Equivalence Theorem and Four Gamete Condition: Perfect Phylogeny on Three-State Characters. SIAM Journal on Discrete Mathematics 25(3), 1144–1175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meacham, C.A.: Theoretical and computational considerations of the compatibility of qualitative taxonomic characters. In: Numerical Taxonomy. Nato ASI Series, vol. G1, Springer (1983)

    Google Scholar 

  21. Semple, C., Steel, M.: Phylogenetics. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press (2003)

    Google Scholar 

  22. Shutters, B., Fernández-Baca, D.: A simple characterization of the minimal obstruction sets for three-state perfect phylogenies. Applied Mathematics Letters 25(9), 1226–1229 (2012)

    Article  Google Scholar 

  23. Steel, M.: Personal communications (2012)

    Google Scholar 

  24. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9(1), 91–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shutters, B., Vakati, S., Fernández-Baca, D. (2012). Improved Lower Bounds on the Compatibility of Quartets, Triplets, and Multi-state Characters. In: Raphael, B., Tang, J. (eds) Algorithms in Bioinformatics. WABI 2012. Lecture Notes in Computer Science(), vol 7534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33122-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33122-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33121-3

  • Online ISBN: 978-3-642-33122-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics