Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 100))

  • 7019 Accesses

Abstract

The simple mean field approximation is universally applicable and yields qualitatively correct results for many lattice systems. In some cases the approximation even produces exact results, for example for universal quantities. In the mean field approximation one replaces the interaction of a microscopic spin with its neighboring spins by an approximate interaction with an averaged spin. Hence the calculation of the free energy density or the order parameter reduces to a single spin problem. In this chapter we discuss the approximation for general spin models and lattice field theories in arbitrary dimensions. The derivation is based upon the variational principle for the effective action and also applies to models with non-trivial target spaces. On the way we introduce the critical exponents and calculate their mean field values. The mean field approximations for the Ising model, standard Potts models, clock models, lattice scalar models, non-linear O(N) models and antiferromagnetic systems are derived. The phenomenological Landau theory for phase transitions is outlined as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The exponent β should not be confused with the inverse temperature.

  2. 2.

    Extensions of the theory are applicable to first-order phase transitions as well.

References

  1. P. Weiss, L’Hypothèse du champs moleculairé et la propriete ferromagnéticque. J. Phys. 6, 661 (1907)

    MATH  Google Scholar 

  2. P.J. Langevin, Magnétisme et théorie des électrons. J. Chim. Phys. 5, 70 (1905)

    MATH  Google Scholar 

  3. L.E. Reichl, Modern Course in Statistical Mechanics (Arnold, London, 1980)

    Google Scholar 

  4. D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, London, 1987)

    Google Scholar 

  5. G. Parisi, Statistical Field Theory (Addison-Wesley, Reading, 1988)

    MATH  Google Scholar 

  6. K. Huang, Introduction to Statistical Physics (CRC Press, Boca Raton, 2001)

    MATH  Google Scholar 

  7. A. Pelissetto, E. Vicari, Critical phenomena and renormalization-group theory. Phys. Rep. 368, 549 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. M. Hasenbusch, A finite size scaling study of lattice models in the 3d Ising universality class. Phys. Rev. B 82, 174433 (2010)

    Article  ADS  Google Scholar 

  9. L.D. Landau, Theory of Fermi-liquids. Zh. Eksp. Teor. Fiz. 30, 1058 (1956) [Sov. Phys. JETP 3, 920 (1957)]

    Google Scholar 

  10. L.D. Landau, Oscillations in a Fermi-liquid. Zh. Eksp. Teor. Fiz. 32, 59 (1957) [Sov. Phys. JETP 5, 101 (1957)]

    Google Scholar 

  11. P. Nozières, Theory of Interacting Fermi Systems. Frontiers in Physics: Lecture Note and Reprint Series, vol. 19 (Benjamin-Cummings, Redwood City, 1964)

    MATH  Google Scholar 

  12. L. Landau, On the theory of Fermi liquid. Sov. Phys. JETP 8, 70 (1959)

    Google Scholar 

  13. V. Galitskii, A. Migdal, Applications of quantum field theory to the many body problem. Sov. Phys. JETP 7, 96 (1958)

    MathSciNet  Google Scholar 

  14. A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinksi, Methods of Quantum Field Theory in Statistical Mechanics (Dover, New York, 1963)

    Google Scholar 

  15. J.C. Toledano, P. Toledano, The Landau Theory of Phase Transitions (World Scientific, Singapore, 1987)

    Google Scholar 

  16. L.S. Ornstein, F. Zernike, Accidental deviations of density and opalescence at the critical point of a single substance. Proc. Acad. Sci. Amst. 17, 793 (1914)

    Google Scholar 

  17. J.S. Smart, Effective Field Theories of Magnetism (Saunders, Philadelphia, 1966)

    Google Scholar 

  18. L. O’Raifeartaigh, A. Wipf, H. Yoneyama, The constraint effective potential. Nucl. Phys. B 271, 653 (1986)

    Article  ADS  Google Scholar 

  19. Y. Fujimoto, A. Wipf, H. Yoneyama, Symmetry restoration of scalar models at finite temperature. Phys. Rev. D 38, 2625 (1988)

    Article  ADS  Google Scholar 

  20. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972)

    MATH  Google Scholar 

  21. N.D. Mermin, H. Wagner, Absence of ferromagnetism or anti-ferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  22. S. Coleman, There are no Goldstone bosons in two dimensions. Commun. Math. Phys. 31, 259 (1973)

    Article  ADS  MATH  Google Scholar 

  23. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wipf, A. (2013). Mean Field Approximation. In: Statistical Approach to Quantum Field Theory. Lecture Notes in Physics, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33105-3_7

Download citation

Publish with us

Policies and ethics