Skip to main content

Scalar Fields at Zero and Finite Temperature

  • Chapter
Statistical Approach to Quantum Field Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 100))

  • 5298 Accesses

Abstract

Scalar fields describe spinless particles, and from an algebraic point of view they are relatively simple. In the electroweak theory a doublet of scalar fields form the Higgs sector and interact with the fields of leptons, quarks and gauge bosons. Scalar fields play a pivotal role in many inflationary cosmological scenarios—they could be responsible for the anticipated exponential expansion of the early universe. This chapter is devoted to the quantization of (Euclidean) scalar field theory at zero and finite temperature. With heat kernel and zeta-function methods we calculate the thermodynamic potential of non-interacting spinless particles. In the second part we introduce and discuss the Schwinger function and effective potential to investigate the phases of interacting scalar field theory at zero and finite temperature. This includes an exhaustive discussion of the Legendre–Frenchel transformation. At the end we discretize the scalar field theory on a space-time lattice and calculate the propagator for non-interacting scalars on a hyper-cubic lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This should not be confused with the n-point Schwinger functions at zero temperature.

  2. 2.

    This means that its square is the identity, i.e. if a the Legendre transform takes f to g, then the Legendre transform of g will be f.

References

  1. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley, Reading, 1995)

    Google Scholar 

  2. L. Brown, Quantum Field Theory (Cambridge University Press, Cambridge, 1992)

    Book  Google Scholar 

  3. R. Haag, Local Quantum Physics: Fields, Particles and Algebras (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  4. M. Maggiore, A Modern Introduction to Quantum Field Theory (Oxford University Press, Oxford, 2005)

    MATH  Google Scholar 

  5. J. Fröhlich, On the triviality of \(\lambda\phi_{d}^{4}\) theories and the approach to the critical point in d≥4 dimensions. Nucl. Phys. B 200, 281 (1982)

    Article  ADS  Google Scholar 

  6. R. Fernandez, J. Fröhlich, A.D. Sokal, Random Walks, Critical Phenomena and Triviality in Quantum Field Theory (Springer, Berlin, 1992)

    Book  MATH  Google Scholar 

  7. A. Liddle, D. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  8. V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  9. K. Osterwalder, R. Schrader, Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. K. Osterwalder, R. Schrader, Axioms for Euclidean Green’s functions II. Commun. Math. Phys. 42, 281 (1975)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. J. Fröhlich, Schwinger functions and their generating functionals. Helv. Phys. Acta 47, 265 (1974)

    MATH  MathSciNet  Google Scholar 

  12. J. Glimm, A. Jaffe, Quantum Physics—A Functional Integral Point of View (Springer, New York, 1981)

    MATH  Google Scholar 

  13. J.S. Dowkder, R. Critchley, Effective Lagrangian and energy–momentum tensor in de Sitter space. Phys. Rev. D 13, 3224 (1976)

    Article  ADS  Google Scholar 

  14. S.W. Hawking, Zeta-function regularization of path integrals in curved space. Commun. Math. Phys. 55, 133 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko, S. Zerbini, Zeta Regularization Techniques with Applications (World Scientific, Singapore, 1994)

    Book  MATH  Google Scholar 

  16. H. Weyl, Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig gestalteten elastischen Körpers. Rend. Circ. Mat. Palermo 39, 1 (1915)

    Article  MATH  Google Scholar 

  17. S. Blau, M. Visser, A. Wipf, Determinants, Dirac operators and one-loops physics. Int. J. Mod. Phys. A 4, 1467 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Weinberg, Gauge and global symmetries at high temperature. Phys. Rev. D 9, 3357 (1974)

    Article  ADS  Google Scholar 

  19. L. Dolan, R. Jackiw, Symmetry behavior at finite temperature. Phys. Rev. D 9, 3320 (1974)

    Article  ADS  Google Scholar 

  20. C.W. Bernard, Feynman rules for gauge theories at finite temperature. Phys. Rev. D 9, 3312 (1974)

    Article  ADS  Google Scholar 

  21. J.I. Kapusta, Finite-Temperature Field Theory (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  22. M. Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  23. P.B. Gilkey, Invariance Theory: The Heat Equation and the Atiyah–Singer Index Theorem (CRC Press, Boca Raton, 1994)

    Google Scholar 

  24. D.V. Vassilevich, Heat kernel expansion: user’s manual. Phys. Rep. 388, 279 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. S. Blau, M. Visser, A. Wipf, Zeta functions and the Casimir energy. Nucl. Phys. B 310, 163 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  26. E. Elizalde, A. Romeo, Expressions for the zeta function regularized Casimir energy. J. Math. Phys. 30, 1133 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. I. Sachs, A. Wipf, Finite temperature Schwinger model. Helv. Phys. Acta 65, 652 (1992)

    MathSciNet  Google Scholar 

  28. E. Corrigan, P. Goddard, H. Osborn, S. Templeton, Zeta function regularization and multi—instanton determinants. Nucl. Phys. B 159, 469 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  29. H.W. Braden, Expansion for field theories on S 1×Σ. Phys. Rev. D 25, 1028 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  30. L. O’Raifeartaigh, A. Wipf, H. Yoneyama, The constraint effective potential. Nucl. Phys. B 271, 653 (1986)

    Article  ADS  Google Scholar 

  31. H. Casimir, On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet., Ser. B Phys. Sci. 51, 793 (1948)

    MATH  Google Scholar 

  32. S.K. Lamoreaux, Demonstration of the Casimir force in the 0.6 to 6 μm range. Phys. Rev. Lett. 78, 5 (1997)

    Article  ADS  Google Scholar 

  33. G. Bressi, G. Carugno, R. Onofrio, G. Ruoso, Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett. 88, 041804 (2002)

    Article  ADS  Google Scholar 

  34. M. Bordag, U. Mohideen, V.M. Mostepanenko, New developments in the Casimir effect. Phys. Rep. 353, 1 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. K.A. Milton, The Casimir Effect (World Scientific, Singapore, 2001)

    Book  MATH  Google Scholar 

  36. J.L. Cardy, I. Peschel, Finite size dependence of the free energy in two-dimensional critical systems. Nucl. Phys. B 300, 377 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  37. C. Wiesendanger, A. Wipf, Running coupling constants from finite size effects. Ann. Phys. 233, 125 (1994)

    Article  ADS  Google Scholar 

  38. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University Press, London, 2002)

    Book  Google Scholar 

  39. R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970)

    MATH  Google Scholar 

  40. R. Balian, From Microphysics to Macrophysics, vol. 1 (Springer, Berlin, 1991)

    Book  MATH  Google Scholar 

  41. J.B. Hiriat-Urruty, J.E. Matinez-Legaz, New formulas for the Legendre–Frenchel transform. J. Math. Anal. Appl. 288, 544 (2003)

    Article  MathSciNet  Google Scholar 

  42. K. Symanzik, A modified model of Euclidean quantum field theory. Courant Institute of Mathematical Sciences, IMM-NYU 327 (1964)

    Google Scholar 

  43. K. Symanzik, Euclidean quantum field theory, in Local Quantum Field Theory, ed. by R. Jost (Academic Press, New York, 1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wipf, A. (2013). Scalar Fields at Zero and Finite Temperature. In: Statistical Approach to Quantum Field Theory. Lecture Notes in Physics, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33105-3_5

Download citation

Publish with us

Policies and ethics