Skip to main content

MEG/EEG Data Analysis Using EEGLAB

  • Chapter
  • First Online:
Magnetoencephalography

Abstract

EEGLAB (sccn.ucsc.edu/eeglab) is an easily extensible, highly evolved, and widely used open source environment for signal processing and visualization of electroencephalographic data running on MATLAB (The Mathworks, Inc.). Methods central to EEGLAB include time- and time-frequency analysis and visualization of individual datasets and complete studies, independent component analysis (ICA), and rich tools for connectivity analysis, brain computer interface (BCI) development, and tools for fusion and joint analysis of simultaneously recorded motion-capture and brain data. We introduce a new MEEG plug-in that enables MEG and simultaneously recorded MEG/EEG (MEEG) data to be readily analyzed using EEGLAB. Its use is demonstrated by the analysis of an MEEG dataset. Here we show a first ICA decomposition of an MEEG data set and use MEEG plotting tools to localize and evaluate maximally independent joint MEG/EEG component processes in the data. The analysis naturally recovers a range of artifact sources, as well as brain sources common to MEG and EEG, as well as sources primarily visible only to EEG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlfors SP, Han J, Belliveau JW, Hämäläinen MS (2010) Sensitivity of MEG and EEG to source orientation. Brain Topogr 23:227–232

    Article  Google Scholar 

  • Akalin Acar Z, Gençer NG (2004) An advanced boundary element method (BEM) implementation for the forward problem of electromagnetic source imaging. Phys Med Biol 49:5011–5028

    Article  Google Scholar 

  • Akalin Acar Z, Makeig SD (2010) Neuroelectromagnetic forward head modeling toolbox. J Neurosci Methods 190:258–270

    Article  Google Scholar 

  • Bigdely-Shamlo N, Kreutz-Delgado K, Kothe C, Makeig SD (2013a) Towards an EEG search engine. IEEE Global Conference on Signal and Information Processing (GlobalSIP), Austin, pp 25–28

    Google Scholar 

  • Bigdely-Shamlo N, Kreutz-Delgado K, Robbins K, Miyakoshi M, Westerfield M, Bel-Bahar T, Kothe CA, His J, Makeig SD (2013b) Hierarchical Event Descriptor (HED) Tags for Analysis of Event-Related EEG Studies. IEEE Global Conference on Signal and Information Processing (GlobalSIP), Austin, pp 1–4

    Google Scholar 

  • Bigdely-Shamlo N, Mullen T, Kreutz-Delgado K, Makeig SD (2013c) Measure projection analysis: a probabilistic approach to EEG source comparison and multi-subject inference. NeuroImage 72:287–303

    Article  Google Scholar 

  • Bledowski C, Kaiser J, Wibral M, Yildiz-Erzberger K, Rahm B (2012) Separable neural bases for subprocesses of recognition in working memory. Cereb Cortex 22:1950–1958

    Article  Google Scholar 

  • Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5:162–176

    Article  Google Scholar 

  • Delorme A, Makeig SD (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21

    Article  Google Scholar 

  • Delorme A, Mullen T, Kothe CA, Acar ZA, Bigdely-Shamlo N, Vankov A, Makeig SD (2011) EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing. Comput Intell Neurosci 2011:1–12

    Article  Google Scholar 

  • Delorme A, Palmer J, Onton J, Oostenveld R, Makeig SD (2012) Independent EEG sources are dipolar. PLoS ONE 7:e30135

    Article  Google Scholar 

  • Fife AA (1999) Synthetic gradiometer systems for MEG. IEEE Trans Appl Supercond 9:4063–4068

    Article  MathSciNet  Google Scholar 

  • Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207

    Article  Google Scholar 

  • Fuchs M, Wagner M, Wischmann HA, Köhler T, Theissen A, Drenckhahn R, Buchner H (1998) Improving source reconstructions by combining bioelectric and biomagnetic data. Electroencephalogr Clin Neurophysiol 107:93–111

    Article  Google Scholar 

  • Hanke M, Halchenko YO (2011) Neuroscience runs on GNU/Linux. Front Neuroinform 5:8

    Article  Google Scholar 

  • Hämäläinen MS, Sarvas J (1989) Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans BioMed Eng 36:165–171

    Article  Google Scholar 

  • Huang M-X, Song T, Hagler DJ Jr, Podgorny I, Jousmaki V, Cui L, Gaa K, Harrington DL, Dale AM, Lee RR, Elman J, Halgren E (2007) A novel integrated MEG and EEG analysis method for dipolar sources. NeuroImage 37:731–748

    Article  Google Scholar 

  • Ikeda S, Toyama K (2000) Independent component analysis for noisy data–MEG data analysis. Neural Netw 13:1063–1074

    Article  Google Scholar 

  • Kothe CA, Makeig SD (2010) BCILAB: a BCI/EEG research framework. Proceedings of the fourth international brain-computer interface meeting

    Google Scholar 

  • Liu AK, Belliveau JW, Dale AM (1998) Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc Natl Acad Sci USA 95:8945–8950

    Article  Google Scholar 

  • Makeig SD, Bell AJ, Jung T-P (1996) Independent component analysis of electroencephalographic data. Adv Neural Info Proc Syst 8:145–151

    Google Scholar 

  • Makeig SD, Debener S, Onton J, Delorme A (2004) Mining event-related brain dynamics. Trends Cogn Sci 8:204–210

    Article  Google Scholar 

  • McKeown MJ, Makeig SD, Brown GG, Jung T-P, Kindermann SS, Bell AJ, Sejnowski TJ (1998) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6:160–188

    Article  Google Scholar 

  • Menninghaus E, Lütkenhöner B (1995) how silent are deep and radial sources in neuromagnetic measurements. In: Baumgartner C (ed) Biomagnetism: fundamental research and clinical applications. Elsevier Science, Vienna, pp 352–356

    Google Scholar 

  • Palmer JA (2006) Variational and scale mixture representations of non-Gaussian densities for estimation in the Bayesian linear model: Sparse coding, independent component analysis, and minimum entropy segmentation. University of California, San Diego

    Google Scholar 

  • Palmer JA, Kreutz-Delgado K, Rao BD, Makeig SD (2007) Modeling and estimation of dependent subspaces with non-radially symmetric and skewed densities. Independent component analysis and signal separation. Springer, Heidelberg, p 97–104

    Chapter  Google Scholar 

  • Pernet CR, Chauveau N, Gaspar C, Rousselet GA (2011) LIMO EEG: a toolbox for hierarchical LInear MOdeling of ElectroEncephaloGraphic data. Comput Intell Neurosci 2011:1–11

    Article  Google Scholar 

  • Takada K, Nomura K, Ono Y, Kurosawa M, Ishiyama A, Kasai N, Nakasato N (2000) MEG/EEG Hybrid Method for Source Localization of a Dipole with Radial Component. Papers of Technical Meeting on Magnetics MAG-00:23–28

    Google Scholar 

  • Trujillo-Barreto NJ, Aubert-Vázquez E, Penny WD (2008) Bayesian M/EEG source reconstruction with spatio-temporal priors. NeuroImage 39:318–335

    Article  Google Scholar 

  • Tsai AC, Jung T-P, Chien V, Savastyanov AN, Makeig SD (2013) Cortical surface alignment in multi-subject spatiotemporal independent EEG source imaging. J Neurosciencce (in press):1–28

    Google Scholar 

  • Tsai AC, Liou M, Jung T-P, Onton JA, Cheng PE, Huang C-C, Duann J-R, Makeig SD (2006) Mapping single-trial EEG records on the cortical surface through a spatiotemporal modality. NeuroImage 32:195–207

    Article  Google Scholar 

  • Tukey PA, Tukey JW (1981) Graphical display of data sets in three or more dimensions. In: Barnett V (ed) Interpreting Multivariate Data. Wiley, Chichester

    Google Scholar 

  • Whitmer D, Worrell G, Stead M, Lee IK, Makeig SD (2010) Utility of independent component analysis for interpretation of intracranial EEG. Front Hum Neurosci 4:184

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Michael Wibral and colleagues for the use of the MEG/EEG data set, and Jason Palmer, Zeynep Akalin Acar, and Arnaud Delorme for useful discussions. This work was funded by a gift from The Swartz Center (Old Field NY) and from grant R01 NS047293-09 from the National Institutes of Health USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Iversen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iversen, J.R., Makeig, S. (2014). MEG/EEG Data Analysis Using EEGLAB. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33045-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33045-2_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33044-5

  • Online ISBN: 978-3-642-33045-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics