Skip to main content

Designing MEG Experiments

  • Chapter
  • First Online:
Magnetoencephalography

Abstract

With well-designed experiments, the exquisite temporal resolution of MEG allows investigators to track the temporal progression of cortical activity throughout the brain during sensory and cognitive tasks and further allows investigators to capture the interplay between the nodes of the cortical network activity underlying brain function. Because of this high temporal resolution, a number of considerations must be considered to obtain good quality MEG data. These considerations include: recording parameters, participant considerations, stimulus equipment and timing reliability, stimulus parameters and temporal sensitivity of the response. This chapter reviews the common instrumentation parameters, peripheral equipment that provides the precise timing needed for MEG experiments, and participant-monitoring equipment that provides complementary information for data quality and data interpretation purposes. Modality-specific (auditory, visual, tactile and motor) factors to consider during data collection are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aine C, Stephen J, Christner R, Hudson D, Best E (2003) Task relevance enhances early transient and late slow-wave activity of distributed cortical sources. J Comput Neurosci 15:203–221

    Article  Google Scholar 

  • Aine CJ, Adair JC, Knoefel JE et al (2005) Temporal dynamics of age-related differences in auditory incidental verbal learning. Brain Res Cogn Brain Res 24(1):1–18

    Google Scholar 

  • Aine CJ, Woodruff CC, Knoefel JE et al (2006) Aging: compensation or maturation? Neuroimage 32(4):1891–1904

    Article  Google Scholar 

  • Berchicci M, Zhang T, Romero L et al (2011) Development of mu rhythm in infants and preschool children. Dev Neurosci 33(2):130–143

    Article  Google Scholar 

  • Brigell M, Bach M, Barber C, Kawasaki K, Kooijman A (1998) Guidelines for calibration of stimulus and recording parameters used in clinical electrophysiology of vision. Calibration Standard Committee of the International Society for Clinical Electrophysiology of Vision (ISCEV). Doc Ophthalmol 95(1):1–14

    Article  Google Scholar 

  • Campbell FW, Kulikowski JJ (1972) The visual evoked potential as a function of contrast of a grating pattern. J Physiol 222(2):345–356

    Google Scholar 

  • Cheyne DO (2013) MEG studies of sensorimotor rhythms: a review. Exp Neurol 245:27–39

    Article  Google Scholar 

  • Coffman BA, Kodituwakku P, Kodituwakku EL, et al (2013) Primary visual response (M100) delays in adolescents with FASD as measured with MEG. Hum Brain Mapp 34(11):2852–2862

    Google Scholar 

  • Curio G, Mackert BM, Burghoff M et al (1997) Somatotopic source arrangement of 600 Hz oscillatory magnetic fields at the human primary somatosensory hand cortex. Neurosci Lett 234(2–3):131–134

    Article  Google Scholar 

  • Engel J Jr, Bragin A, Staba R, Mody I (2009) High-frequency oscillations: what is normal and what is not? Epilepsia 50(4):598–604

    Article  Google Scholar 

  • Flemming L, Wang Y, Caprihan A, Eiselt M, Haueisen J, Okada Y (2005) Evaluation of the distortion of EEG signals caused by a hole in the skull mimicking the fontanel in the skull of human neonates. Clin Neurophysiol 116(5):1141–1152

    Article  Google Scholar 

  • Grosse P, Cassidy MJ, Brown P (2002) EEG-EMG, MEG-EMG and EMG-EMG frequency analysis: physiological principles and clinical applications. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 113(10):1523–1531

    Google Scholar 

  • Hamalainen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65(2):413–497

    Article  Google Scholar 

  • Hari R, Kaila K, Katila T, Tuomisto T, Varpula T (1982) Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation. Electroencephalogr Clin Neurophysiol 54(5):561–569

    Article  Google Scholar 

  • Horton JC, Hoyt WF (1991) The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol 109(6):816–824

    Article  Google Scholar 

  • Inoue K, Nakanishi K, Hadoush H et al (2013) Somatosensory mechanical response and digit somatotopy within cortical areas of the postcentral gyrus in humans: an MEG study. Hum Brain Mapp 34(7):1559–1567

    Article  Google Scholar 

  • Iwaki S, Yamamoto C, Tonoike M, Yamamoto T (2004) Rejection of stimulus-related MEG artifacts using independent component analysis. Neurol Clin Neurophysiol NCN 2004:17

    Google Scholar 

  • Jamali S, Ross B (2013) Somatotopic finger mapping using MEG: toward an optimal stimulation paradigm. Clin Neurophysiol 124(8):1659–1670

    Article  Google Scholar 

  • Kandel E, Schwartz J, Jessell T (2000) Principles of Neural Science, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Lauronen L, Nevalainen P, Wikstrom H, Parkkonen L, Okada Y, Pihko E (2006) Immaturity of somatosensory cortical processing in human newborns. Neuroimage 33(1):195–203

    Article  Google Scholar 

  • Maess B, Herrmann CS, Hahne A, Nakamura A, Friederici AD (2006) Localizing the distributed language network responsible for the N400 measured by MEG during auditory sentence processing. Brain Res 1096(1):163–172

    Article  Google Scholar 

  • Mantini D, Franciotti R, Romani GL, Pizzella V (2007) Improving MEG source localizations: an automated method for complete artifact removal based on independent component analysis. Neuroimage 34:598–607

    Google Scholar 

  • May ES, Butz M, Kahlbrock N, Hoogenboom N, Brenner M, Schnitzler A (2012) Pre- and post-stimulus alpha activity shows differential modulation with spatial attention during the processing of pain. Neuroimage 62(3):1965–1974

    Article  Google Scholar 

  • Moseley RL, Pulvermuller F, Shtyrov Y (2013) Sensorimotor semantics on the spot: brain activity dissociates between conceptual categories within 150 ms. Sci Rep 3:1928

    Article  Google Scholar 

  • Okada YC, Kaufman L, Brenner D, Williamson SJ (1982) Modulation transfer functions of the human visual system revealed by magnetic field measurements. Vis Res 22(2):319–333

    Article  Google Scholar 

  • Piitulainen H, Bourguignon M, De Tiege X, Hari R, Jousmaki V (2013) Coherence between magnetoencephalography and hand-action-related acceleration, force, pressure, and electromyogram. Neuroimage 72:83–90

    Article  Google Scholar 

  • Robson J (1966) Spatial and temporal contrast-sensitivity functions of the visual system. J Opt Soc Am 56:1141–1142

    Google Scholar 

  • Rohrbaugh JW, McCallum WC, Gaillard AW, Simons RF, Birbaumer N, Papakostopoulos D (1986) ERPs associated with preparatory and movement-related processes. A review. Electroencephalogr Clin Neurophysiol Suppl 38:189–229

    Google Scholar 

  • Rossiter HE, Worthen SF, Witton C, Hall SD, Furlong PL (2013) Gamma oscillatory amplitude encodes stimulus intensity in primary somatosensory cortex. Front Hum Neurosci 7:362

    Article  Google Scholar 

  • Rovamo J, Virsu V (1979) An estimation and application of the human cortical magnification factor. Exp Brain Res 37:495–510

    Article  Google Scholar 

  • Stephen J, Kodituwakku P, Kodituwakku EL et al (2012) Delays in auditory processing identified in preschool children with FASD. Alcohol Clin Exp Res 36(10):1720–1727

    Article  Google Scholar 

  • Sun ZY, Wang JH, Sun JL et al (2013) Magnetoencephalography assessment of evoked magnetic fields and cognitive function in subcortical ischemic vascular dementia patients. Neurosci Lett 532:17–22

    Article  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J (1996) Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci 16(13):4240–4249

    Google Scholar 

  • Tesche C, Karhu J (2000) Theta oscillations index human hippocampal activation during a working memory task. Proc Natl Acad Sci USA 97(2):919–924

    Article  Google Scholar 

  • Timmermann L, Gross J, Butz M, Kircheis G, Haussinger D, Schnitzler A (2004) Pathological oscillatory coupling within the human motor system in different tremor syndromes as revealed by magnetoencephalography. Neurol Clin Neurophysiol 2004:26

    Google Scholar 

  • Timmermann L, Gross J, Dirks M, Volkmann J, Freund HJ, Schnitzler A (2003) The cerebral oscillatory network of parkinsonian resting tremor. Brain 126(Pt 1):199–212

    Google Scholar 

  • Uhlhaas PJ, Pipa G, Neuenschwander S, Wibral M, Singer W (2011) A new look at gamma? High-(>60 Hz) gamma-band activity in cortical networks: function, mechanisms and impairment. Prog Biophys Mol Biol 105(1–2):14–28

    Article  Google Scholar 

  • Uusitalo MA, Ilmoniemi RJ (1997) Signal-space projection method for separating MEG or EEG into components. Med Biol Eng Comput 35(2):135–140

    Article  Google Scholar 

  • Vigario R, Sarela J, Jousmaki V, Hamalainen M, Oja E (2000) Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans Bio-Med Eng 47(5):589–593

    Article  Google Scholar 

  • Wikstrom H, Huttunen J, Korvenoja A et al (1996) Effects of interstimulus interval on somatosensory evoked magnetic fields (SEFs): a hypothesis concerning SEF generation at the primary sensorimotor cortex. Electroencephalogr Clin Neurophysiol 100(6):479–487

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia M. Stephen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stephen, J.M. (2014). Designing MEG Experiments. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33045-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33045-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33044-5

  • Online ISBN: 978-3-642-33045-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics