Skip to main content

Selection of Stimulus Parameters for Visual MEG Studies of Sensation and Cognition

  • Chapter
  • First Online:
  • 2333 Accesses

Abstract

Historically, MEG investigations of the visual system either attempted to: (1) corroborate findings from invasive monkey or basic psychophysical studies as an indirect way to validate MEG results or (2) enhance previously demonstrated clinical event-related potential findings (ERPs) (e.g., multiple sclerosis patients reveal longer ERP peak latencies). We focused on the former with the ultimate goal of developing/testing new stimulus paradigms and clinical applications for assessing cognitive functions such as working memory since several neuropsychiatric and neurological disorders such as schizophrenia and dementia reveal deficits in working memory circuits. However, characterization of neural circuits involved in disorders of the nervous system (i.e., neuromagnetic mapping of networks of regions and their temporal dynamics) presents a tremendous technical challenge. In this chapter we will discuss some of the technical issues we encountered while developing and testing paradigms for basic vision, attention and working memory, and will highlight ways to avoid some of these potential confounds. We will also briefly review the organization of the visual system to provide an overall appreciation for the intricacies of the visual system as well as providing some historical context for the manner in which certain studies have been designed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aertsen AM, Gerstein GL, Habib MK, Palm G (1989) Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J Neurophysiol 61:900–917

    Google Scholar 

  • Ahlfors SP, Ilmoniemi RJ, Hamalainen MS (1992) Estimates of visually evoked cortical currents. Electroencephalogr Clin Neurophysiol 82:225–236

    Article  Google Scholar 

  • Aine CJ, Bryant JE, Knoefel JE, Adair JC, Hart B, Donahue CH, Montano R, Hayek R, Qualls C, Ranken D, Stephen JM (2010) Different strategies for auditory word recognition in healthy versus normal aging. Neuroimage 49:3319–3330

    Article  Google Scholar 

  • Aine CJ, Sanfratello L, Adair JC, Knoefel JE, Caprihan A, Stephen JM (2011) Development and decline of memory functions in normal, pathological and healthy successful aging. Brain Topogr 24:323–339

    Article  Google Scholar 

  • Aine CJ, Stephen JM (2002) MEG studies of visual processing. In: Zanni A, Proverbio AM (eds) The cognitive electrophysiology of mind and brain, Academic Press, pp 93–142

    Google Scholar 

  • Aine CJ, Stephen JM, Christner R, Hudson D, Best E (2003) Task relevance enhances early transient and late slow-wave activity of distributed cortical sources. J Comput Neurosci 15:203–221

    Article  Google Scholar 

  • Aine CJ, Supek S, George JS (1995) Temporal dynamics of visual-evoked neuromagnetic sources: effects of stimulus parameters and selective attention. Int J Neurosci 80:79–104

    Google Scholar 

  • Aine CJ, Supek S, George JS, Ranken D, Lewine J, Sanders J, Best E, Tiee W, Flynn ER, Wood CC (1996) Retinotopic organization of human visual cortex: departures from the classical model. Cereb Cortex 6:354–361

    Article  Google Scholar 

  • Albright TD (1984) Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol 52:1106–1130

    Google Scholar 

  • Alvarez P, Squire LR (1994) Memory consolidation and the medial temporal lobe: a simple network model. Proc Natl Acad Sci U S A 91:7041–7045

    Article  Google Scholar 

  • Armington JC (1964a) Adaptational changes in the human electroretinogram and occipital response. Vision Res 4:179–192

    Article  Google Scholar 

  • Armington JC (1964b) Relations between electroretinograms and occipital potentials elicited by flickering Stimuli. Doc Ophthalmol 18:194–206

    Article  Google Scholar 

  • Armstrong RA, Slaven A, Harding GF (1991) Visual evoked magnetic fields to flash and pattern in 100 normal subjects. Vision Res 31:1859–1864

    Article  Google Scholar 

  • Baylis GC, Rolls ET (1987) Responses of neurons in the inferior temporal cortex in short term and serial recognition memory tasks. Exp Brain Res 65:614–622

    Article  Google Scholar 

  • Brefczynski JA, DeYoe EA (1999) A physiological correlate of the ‘spotlight’ of visual attention. Nat Neurosci 2:370–374

    Article  Google Scholar 

  • Bressler SL (1995) Large-scale cortical networks and cognition. Brain Res Brain Res Rev 20:288–304

    Article  Google Scholar 

  • Butler SR, Georgiou GA, Glass A, Hancox RJ, Hopper JM, Smith KR (1987) Cortical generators of the CI component of the pattern-onset visual evoked potential. Electroencephalogr Clin Neurophysiol 68:256–267

    Article  Google Scholar 

  • Camisa J, Bodis-Wollner I (1982) Stimulus parameters and visual evoked potential diagnosis. In: Bodis-Wollner I (ed) Evoked potentials. The New York Academy of Sciences, New York, pp 645–647

    Google Scholar 

  • Campbell FW, Kulikowski JJ (1972) The visual evoked potential as a function of contrast of a grating pattern. J Physiol 222:345–356

    Google Scholar 

  • Campbell FW, Maffei L (1970) Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. J Physiol 207:635–652

    Google Scholar 

  • Cantalupo C, Hopkins WD (2001) Asymmetric Broca’s area in great apes. Nature 414:505

    Article  Google Scholar 

  • Chafee MV, Goldman-Rakic PS (2000) Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J Neurophysiol 83:1550–1566

    Google Scholar 

  • Courtney SM, Ungerleider LG (1997) What fMRI has taught us about human vision. Curr Opin Neurobiol 7:554–561

    Article  Google Scholar 

  • Damasio A (1989) The brain binds entities and events by multiregional activation from convergence zones. Neurol Comp 1:23–32

    Google Scholar 

  • Daniel PM, Whitteridge D (1961) The representation of the visual field on the cerebral cortex in monkeys. J Physiol 159:203–221

    Google Scholar 

  • Darcey TM, Ary JP, Fender DH (1980) Spatio-temporal visually evoked scalp potentials in response to partial-field patterned stimulation. Electroencephalogr Clin Neurophysiol 50:348–355

    Article  Google Scholar 

  • De Monasterio FM, Gouras P (1975) Functional properties of ganglion cells of the rhesus monkey retina. J Physiol 251:167–195

    Google Scholar 

  • De Yoe EA, Felleman DJ, Van Essen DC, McClendon E (1994) Multiple processing streams in occipitotemporal cortex. Nature 371:151–154

    Article  Google Scholar 

  • De Yoe EA, Van Essen DC (1988) Concurrent processing streams in monkey visual cortex. Trends Neurosci 11:219–226

    Article  Google Scholar 

  • Dhond RP, Witzel T, Dale AM, Halgren E (2007) Spatiotemporal cortical dynamics underlying abstract and concrete word reading. Hum Brain Mapp 28:355–362

    Article  Google Scholar 

  • Di Russo F, Martinez A, Hillyard SA (2003) Source analysis of event-related cortical activity during visuo-spatial attention. Cereb Cortex 13:486–499

    Article  Google Scholar 

  • Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716

    Article  Google Scholar 

  • Engel AK, Konig P, Kreiter AK, Schillen TB, Singer W (1992) Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci 15:218–226

    Article  Google Scholar 

  • Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7:181–192

    Article  Google Scholar 

  • Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 187:517–552

    Google Scholar 

  • Farah M, Humphreys GW, Rodman HR (1999) Chapter 52: object and face recognition. In: Zigmond MJ, Bloom FE, Landis SC, Roberts JL, Squire LR (eds) Fundamental neuroscience, Academic Press, San Diego

    Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  Google Scholar 

  • Fox PT, Miezin FM, Allman JM, Van Essen DC, Raichle ME (1987) Retinotopic organization of human visual cortex mapped with positron-emission tomography. J Neurosci 7:913–922

    Google Scholar 

  • Friston KJ (1994) Statistical parametric mapping. In: Thatcher MHRW, Zeffiro T, John ER, Huerta M (eds) Functional neuroimaging: technical foundations. Academic Press, New York, pp 79–93

    Google Scholar 

  • Fuster JM (1973) Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J Neurophysiol 36:61–78

    Google Scholar 

  • Fuster JM (1997) Network memory. Trends Neurosci 20:451–459

    Article  Google Scholar 

  • Fuster JM (2001) The prefrontal cortex–an update: time is of the essence. Neuron 30:319–333

    Article  Google Scholar 

  • Fuster JM, Jervey J (1981) Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. J Neurosci 2:361–365

    Google Scholar 

  • Gerstein GL, Perkel DH (1969) Simultaneously recorded trains of action potentials: analysis and functional interpretation. Science 164:828–830

    Article  Google Scholar 

  • Gilbert CD, Sigman M, Crist RE (2001) The neural basis of perceptual learning. Neuron 31:681–697

    Article  Google Scholar 

  • Goldman-Rakic PS (1988) Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci 11:137–156

    Article  Google Scholar 

  • Goldman-Rakic PS (1995) Architecture of the prefrontal cortex and the central executive. Ann N Y Acad Sci 769:71–83

    Article  Google Scholar 

  • Gray CM (1999) The temporal correlation hypothesis of visual feature integration: still alive and well. Neuron 24(31–47):111–125

    Google Scholar 

  • Haenny PE, Schiller PH (1988) State dependent activity in monkey visual cortex. I. Single cell activity in V1 and V4 on visual tasks. Exp Brain Res 69:225–244

    Article  Google Scholar 

  • Harding GF, Degg C, Anderson SJ, Holliday I, Fylan F, Barnes G, Bedford J (1994) Topographic mapping of the pattern onset evoked magnetic response to stimulation of different portions of the visual field. Int J Psychophysiol 16:175–183

    Article  Google Scholar 

  • Harding GF, Janday B, Armstrong RA (1991) Topographic mapping and source localization of the pattern reversal visual evoked magnetic response. Brain Topogr 4:47–55

    Article  Google Scholar 

  • Harter MR (1971) Visually evoked cortical responses to checkerboard patterns: effects of check size as a function of retinal eccentricity. Electroenceph clin Neurophys 23:48–54

    Google Scholar 

  • Hashimoto T, Kashii S, Kikuchi M, Honda Y, Nagamine T, Shibasaki H (1999) Temporal profile of visual evoked responses to pattern-reversal stimulation analyzed with a whole-head magnetometer. Exp Brain Res 125:375–382

    Article  Google Scholar 

  • Hillebrand A, Barnes GR (2002) A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. Neuroimage 16:638–650

    Article  Google Scholar 

  • Holmes G (1945) The organization of the visual cortex in man. Proc R Soc Lond [Biol] 132:348–361

    Article  Google Scholar 

  • Horton JC, Hoyt WF (1991) The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol 109:816–824

    Article  Google Scholar 

  • Howarth PA, Bradley A (1986) The longitudinal chromatic aberration of the human eye, and its correction. Vision Res 26:361–366

    Article  Google Scholar 

  • Hupe JM, James AC, Girard P, Lomber SG, Payne BR, Bullier J (2001) Feedback connections act on the early part of the responses in monkey visual cortex. J Neurophysiol 85:134–145

    Google Scholar 

  • Inoue M, Mikami A, Ando I, Tsukada H (2004) Functional brain mapping of the macaque related to spatial working memory as revealed by PET. Cereb Cortex 14:106–119

    Article  Google Scholar 

  • Jeffreys D (1977) The physiological significance of pattern visual evoked potentials. In: Desmedt JE (ed) Visual evoked potentials in man: new developments. Clarendon Press, Oxford, pp 134–167

    Google Scholar 

  • Jeffreys DA, Axford JG (1972a) Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Exp Brain Res 16:1–21

    Google Scholar 

  • Jeffreys DA, Axford JG (1972b) Source locations of pattern-specific components of human visual evoked potentials. II. Component of extrastriate cortical origin. Exp Brain Res 16:22–40

    Google Scholar 

  • Jensen O, Tesche CD (2002) Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci 15:1395–1399

    Article  Google Scholar 

  • Jerbi K, Baillet S, Mosher JC, Nolte G, Garnero L, Leahy RM (2004) Localization of realistic cortical activity in MEG using current multipoles. Neuroimage 22:779–793

    Article  Google Scholar 

  • Kamada K, Todo T, Masutani Y, Aoki S, Ino K, Morita A, Saito N (2007) Visualization of the frontotemporal language fibers by tractography combined with functional magnetic resonance imaging and magnetoencephalography. J Neurosurg 106:90–98

    Article  Google Scholar 

  • Kaufman L, Williamson SJ (1980) The evoked magnetic field of the human brain. Ann N Y Acad Sci 340:45–65

    Article  Google Scholar 

  • Kelly DH (1966) Frequency doubling in visual responses. J Opt Soc Am 56:1628–1633

    Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29:169–195

    Article  Google Scholar 

  • Kosslyn SM (1988) Aspects of a cognitive neuroscience of mental imagery. Science 240:1621–1626

    Article  Google Scholar 

  • Kulikowski JJ (1974) Proceedings: Human averaged occipital potentials evoked by pattern and movement. J Physiol 242:70P–71P

    Google Scholar 

  • Lamme VA, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23:571–579

    Article  Google Scholar 

  • Lamme VA, Zipser K, Spekreijse H (1998) Figure-ground activity in primary visual cortex is suppressed by anesthesia. Proc Natl Acad Sci U S A 95:3263–3268

    Article  Google Scholar 

  • Lampl I, Reichova I, Ferster D (1999) Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron 22:361–374

    Article  Google Scholar 

  • Lee H, Simpson GV, Logothetis NK, Rainer G (2005) Phase locking of single neuron activity to theta oscillations during working memory in monkey extrastriate visual cortex. Neuron 45:147–156

    Article  Google Scholar 

  • Livingstone MS, Hubel DH (1987) Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci 7:3416–3468

    Google Scholar 

  • Maclin E, Okada YC, Kaufman L, Williamson SJ (1983) Retinotopic map on the visual cortex for eccentrically placed patterns: first noninvasive measurement. Il Nuovo Cimento 2:410–419

    Article  Google Scholar 

  • Maier J, Dagnelie G, Spekreijse H, van Dijk BW (1987) Principal components analysis for source localization of VEPs in man. Vision Res 27:165–177

    Article  Google Scholar 

  • Martinez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz DJ, Wong EC, Hinrichs H, Heinze HJ, Hillyard SA (1999) Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat Neurosci 2:364–369

    Article  Google Scholar 

  • Maunsell JH, van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3:2563–2586

    Google Scholar 

  • Mehta AD, Ulbert I, Schroeder CE (2000a) Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. Cereb Cortex 10:343–358

    Article  Google Scholar 

  • Mehta AD, Ulbert I, Schroeder CE (2000b) Intermodal selective attention in monkeys. II: physiological mechanisms of modulation. Cereb Cortex 10:359–370

    Article  Google Scholar 

  • Merigan WH, Maunsell JH (1993) How parallel are the primate visual pathways? Annu Rev Neurosci 16:369–402

    Article  Google Scholar 

  • Mesulam MM (1998) From sensation to cognition. Brain 121(Pt 6):1013–1052

    Article  Google Scholar 

  • Michael WF, Halliday AM (1971) Differences between the occipital distribution of upper and lower field pattern-evoked responses in man. Brain Res 32:311–324

    Article  Google Scholar 

  • Miller EK, Li L, Desimone R (1991) A neural mechanism for working and recognition memory in inferior temporal cortex. Science 254:1377–1379

    Article  Google Scholar 

  • Milner PM (1974) A model for visual shape recognition. Psychol Rev 81:521–535

    Article  Google Scholar 

  • Mishkin M (1982) A memory system in the monkey. Philos Trans R Soc Lond B Biol Sci 298:83–95

    Article  Google Scholar 

  • Motter BC (1994) Neural correlates of feature selective memory and pop-out in extrastriate area V4. J Neurosci 14:2190–2199

    Google Scholar 

  • Nakamura M, Kakigi R, Okusa T, Hoshiyama M, Watanabe K (2000) Effects of check size on pattern reversal visual evoked magnetic field and potential. Brain Res 872:77–86

    Article  Google Scholar 

  • Noesselt T, Hillyard SA, Woldorff MG, Schoenfeld A, Hagner T, Jancke L, Tempelmann C, Hinrichs H, Heinze HJ (2002) Delayed striate cortical activation during spatial attention. Neuron 35:575–587

    Article  Google Scholar 

  • Nowak LG, Bullier J (1997) The timing of information transfer in the visual system. In: Rockland KS, Kaas JH, Peters A (eds) Cerebral cortex. Plenum Press, New York, pp 205–241

    Google Scholar 

  • Ojemann G, Ojemann J, Lettich E, Berger M (1989) Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 71:316–326

    Article  Google Scholar 

  • Okada YC, Kaufman L, Brenner D, Williamson SJ (1982) Modulation transfer functions of the human visual system revealed by magnetic field measurements. Vision Res 22:319–333

    Article  Google Scholar 

  • Ossenblok P, Spekreijse H (1991) The extrastriate generators of the EP to checkerboard onset. A source localization approach. Electroencephalogr Clin Neurophysiol 80:181–193

    Article  Google Scholar 

  • Perry JNW, Childers DG (1969) The human visual evoked response: method and theory. Charles C Thomas, Springfield

    Google Scholar 

  • Perry VH, Cowey A (1985) The ganglion cell and cone distributions in the monkey’s retina: implications for central magnification factors. Vision Res 25:1795–1810

    Article  Google Scholar 

  • Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci 5:805–811

    Article  Google Scholar 

  • Polyak SI (1957) The vertebrate visual system. University of Chicago, Chicago

    Google Scholar 

  • Ranken DM, Stephen JM, George JS (2004) MUSIC seeded multi-dipole MEG modeling using the constrained start spatio-temporal modeling procedure. Neurol Clin Neurophysiol 2004:80

    Google Scholar 

  • Regan D (1972) Evoked potentials in psychology, sensory physiology and clinical medicine. Wiley-Interscience, New York

    Book  Google Scholar 

  • Regan D (1978) Assessment of visual acuity by evoked potential recording: ambiguity caused by temporal dependence of spatial frequency selectivity. Vision Res 18:439–443

    Article  Google Scholar 

  • Regan D (1989) Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New York

    Google Scholar 

  • Reynolds J, Desimone R (1999) The role of neural mechanisms of attention in solving the binding problem. Neuron 24:19–29

    Article  Google Scholar 

  • Richmond BJ, Optican LM (1987) Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. II. Quantification of response waveform. J Neurophysiol 57:147–161

    Google Scholar 

  • Richmond BJ, Optican LM, Spitzer H (1990) Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. J Neurophysiol 64:351–369

    Google Scholar 

  • Richmond BJ, Wurtz RH, Sato T (1983) Visual responses of inferior temporal neurons in awake rhesus monkey. J Neurophysiol 50:1415–1432

    Google Scholar 

  • Robson JG (1966) Spatial and temporal contrast-sensitivity functions of the visual system. J Opt Soc Am 56:1141–1142

    Google Scholar 

  • Roelfsema PR, Engel AK, Konig P, Singer W (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385:157–161

    Article  Google Scholar 

  • Roelfsema PR, Lamme VA, Spekreijse H (1998) Object-based attention in the primary visual cortex of the macaque monkey. Nature 395:376–381

    Article  Google Scholar 

  • Rovamo J, Virsu V (1979) An estimation and application of the human cortical magnification factor. Exp Brain Res 37:495–510

    Article  Google Scholar 

  • Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2:539–550

    Article  Google Scholar 

  • Sanfratello L, Caprihan A, Stephen JM, Knoefel JE, Adair JC, Qualls C, Lundy SL, Aine CJ (2014) Same task, different strategies: how brain networks can be influenced by memory strategy. Hum Brain Mapp (in press)

    Google Scholar 

  • Scheeringa R, Petersson KM, Oostenveld R, Norris DG, Hagoort P, Bastiaansen MC (2009) Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage 44:1224–1238

    Article  Google Scholar 

  • Seidemann E, Newsome WT (1999) Effect of spatial attention on the responses of area MT neurons. J Neurophysiol 81:1783–1794

    Google Scholar 

  • Seki K, Nakasato N, Fujita S, Hatanaka K, Kawamura T, Kanno A, Yoshimoto T (1996) Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure. Electroencephalogr Clin Neurophysiol 100:436–442

    Article  Google Scholar 

  • Semendeferi K, Lu A, Schenker N, Damasio H (2002) Humans and great apes share a large frontal cortex. Nat Neurosci 5:272–276

    Article  Google Scholar 

  • Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893

    Article  Google Scholar 

  • Shigeto H, Tobimatsu S, Yamamoto T, Kobayashi T, Kato M (1998) Visual evoked cortical magnetic responses to checkerboard pattern reversal stimulation: a study on the neural generators of N75, P100 and N145. J Neurol Sci 156:186–194

    Article  Google Scholar 

  • Shipp S, Zeki S (1985) Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex. Nature 315:322–325

    Article  Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    Article  Google Scholar 

  • Spector RH, Glaser JS, David NJ, Vining DQ (1981) Occipital lobe infarctions: perimetry and computed tomography. Neurology 31:1098–1106

    Article  Google Scholar 

  • Squire LR (1986) Mechanisms of memory. Science 232:1612–1619

    Article  Google Scholar 

  • Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253:1380–1386

    Article  Google Scholar 

  • Steinmetz H, Seitz RJ (1991) Functional anatomy of language processing: neuroimaging and the problem of individual variability. Neuropsychologia 29:1149–1161

    Article  Google Scholar 

  • Stensaas SS, Eddington DK, Dobelle WH (1974) The topography and variability of the primary visual cortex in man. J Neurosurg 40:747–755

    Article  Google Scholar 

  • Stephen JM, Aine CJ, Christner RF, Ranken D, Huang M, Best E (2002) Central versus peripheral visual field stimulation results in timing differences in dorsal stream sources as measured with MEG. Vision Res 42:3059–3074

    Article  Google Scholar 

  • Stephen JM, Aine CJ, Ranken D, Hudson D, Shih JJ (2003) Multidipole analysis of simulated epileptic spikes with real background activity. J Clin Neurophysiol 20:1–16

    Article  Google Scholar 

  • Stephen JM, Ranken D, Aine CJ (2006) Frequency-following and connectivity of different visual areas in response to contrast-reversal stimulation. Brain Topogr 18:257–272

    Article  Google Scholar 

  • Stippich C, Rapps N, Dreyhaupt J, Durst A, Kress B, Nennig E, Tronnier VM, Sartor K (2007) Localizing and lateralizing language in patients with brain tumors: Feasibility of routine preoperative functional MR imaging in 81 consecutive patients. Radiology 243:828–836

    Article  Google Scholar 

  • Stone J, Johnston E (1981) The topography of primate retina: a study of the human, bushbaby, and new- and old-world monkeys. J Comp Neurol 196:205–223

    Article  Google Scholar 

  • Supek S, Aine CJ, Ranken D, Best E, Flynn ER, Wood CC (1999) Single versus paired visual stimulation: superposition of early neuromagnetic responses and retinotopy in extrastriate cortex in humans. Brain Res 830:43–55

    Article  Google Scholar 

  • Szaflarski JP, Holland SK, Schmithorst VJ, Byars AW (2006) fMRI study of language lateralization in children and adults. Hum Brain Mapp 27:202–212

    Article  Google Scholar 

  • Tallon-Baudry C, Mandon S, Freiwald WA, Kreiter AK (2004) Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task. Cereb Cortex 14:713–720

    Article  Google Scholar 

  • Tomita H, Ohbayashi M, Nakahara K, Hasegawa I, Miyashita Y (1999) Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401:699–703

    Article  Google Scholar 

  • Tootell RB, Hadjikhani N, Hall EK, Marrett S, Vanduffel W, Vaughan JT, Dale AM (1998a) The retinotopy of visual spatial attention. Neuron 21:1409–1422

    Article  Google Scholar 

  • Tootell RB, Hadjikhani NK, Vanduffel W, Liu AK, Mendola JD, Sereno MI, Dale AM (1998b) Functional analysis of primary visual cortex (V1) in humans. Proc Natl Acad Sci U S A 95:811–817

    Article  Google Scholar 

  • Tulving E (1995) Organization of memory: quo vadis. MIT Press, Cambridge

    Google Scholar 

  • Ungerleider LG (1995) Functional brain imaging studies of cortical mechanisms for memory. Science 270:769–775

    Article  Google Scholar 

  • Ungerleider LG, Desimone R (1986) Projections to the superior temporal sulcus from the central and peripheral field representations of V1 and V2. J Comp Neurol 248:147–163

    Article  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586

    Google Scholar 

  • Van Essen DC (1979) Visual areas of the mammalian cerebral cortex. Annu Rev Neurosci 2:227–263

    Google Scholar 

  • Van Essen DC (1985) Functional organization of primate visual cortex. In: Peters A, Jones EG (eds) Cerebral cortex. Plenum, New York, pp 259–329

    Google Scholar 

  • Van Essen DC, Maunsell JH (1983) Hierarchical organization and functional streams in the visual cortex. Trends Neurosci 6:370–375

    Article  Google Scholar 

  • Walter WG, Cooper R, Aldridge VJ, McCallum WC, Winter AL (1964) Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature 203:380–384

    Article  Google Scholar 

  • Wheeler ME, Petersen SE, Buckner RL (2000) Memory’s echo: vivid remembering reactivates sensory-specific cortex. Proc Natl Acad Sci U S A 97:11125–11129

    Article  Google Scholar 

  • Williamson SJ, Kaufman L, Brenner D (1978) Latency of the neuromagnetic response of the human visual cortex. Vision Res 18:107–110

    Article  Google Scholar 

  • Wilson FA, Scalaidhe SP, Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260:1955–1958

    Article  Google Scholar 

  • Wright MJ, Ikeda H (1974) Processing of spatial and temporal information in the visual system. In: Schmitt FO, Worden FG (eds) The neurosciences. MIT Press, Cambridge, pp 115–122

    Google Scholar 

  • Zeki S (1980) A direct projection from area V1 to area V3A of rhesus monkey visual cortex. Proc R Soc Lond B Biol Sci 207:499–506

    Article  Google Scholar 

  • Zeki SM (1973) Colour coding in rhesus monkey prestriate cortex. Brain Res 53:422–427

    Article  Google Scholar 

  • Zeki SM (1978) Functional specialisation in the visual cortex of the rhesus monkey. Nature 274:423–428

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01 AG029495, R01 AG020302, R01 EY08610, R21 MH080141, 5P20 RR021938 and 2P20 GM103472, as well as a VA MERIT review grant and Croatian MZOS grant 119-1081870-1252. The content of this chapter is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors thank The Mind Research Network (Albuquerque, New Mexico) for the unlimited use of their computing facility, as well as UNM Radiology Department and the Research Office of the New Mexico VA Health Care System. We also thank Yoshio Okada for his insightful comments on an earlier version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl J. Aine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aine, C.J., Supek, S., Sanfratello, L., Stephen, J.M. (2014). Selection of Stimulus Parameters for Visual MEG Studies of Sensation and Cognition. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33045-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33045-2_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33044-5

  • Online ISBN: 978-3-642-33045-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics