Skip to main content

MEG Auditory Research

  • Chapter
  • First Online:
Magnetoencephalography

Abstract

This chapter reviews auditory research performed with magnetoencephalography (MEG) in normal listeners, with an emphasis on the auditory cortex. The first section provides an overview of basic characteristics of auditory evoked fields and their classification. The second section reviews the relationship between a selection of basic auditory features—including lateralization, periodicity, and spectral content—and auditory evoked fields generated in auditory cortex. The final section highlights recent MEG research in the field of auditory scene analysis, focusing specifically on auditory stream segregation, selective attention, and informational masking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahveninen J, Hämäläinen M, Jääskeläinen IP, Ahlfors SP, Huang S, Lin FH, Raij T, Sams M, Vasios CE, Belliveau JW (2011) Attention—driven auditory cortex short—term plasticity helps segregate relevant sounds from noise. Proc Nat Acad Sci USA 108:4182–4187

    Google Scholar 

  • Ahveninen J, Jääskeläinen IP, Raij T, Bonmassar G, Devore S, Hämäläinen M, Levanen S, Lin FH, Sams M, Shinn-Cunningham BG, Witzel T, Belliveau JW (2006) Task-modulated “what” and “where” pathways in human auditory cortex. Proc Nat Acad Sci USA 103:14608–14613

    Google Scholar 

  • Anurova I, Artchakov D, Korvenoja A, Ilmoniemi RJ, Aronen HJ, Carlson S (2005) Cortical generators of slow evoked responses elicited by spatial and nonspatial auditory working memory tasks. Clin Neurophysiol 116:1644–1654

    Google Scholar 

  • Barker D, Plack CJ, Hall DA (2012) Reexamining the evidence for a pitch-sensitive region: a human fMRI study using iterated ripple noise. Cereb Cortex 22:745–753

    Google Scholar 

  • Bidet-Caulet A, Fischer C, Besle J, Aguera PE, Giard MH, Bertrand O (2007) Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex. J Neurosci 27:9252–9261

    Google Scholar 

  • Biermann S, Heil P (2000) Parallels between timing of onset responses of single neurons in cat and of evoked magnetic fields in human auditory cortex. J Neurophysiol 84:2426–2439

    Google Scholar 

  • Braak H (1978) The pigment architecture of the human temporal lobe. Anat embryol (Berlin) 154:213–240

    Google Scholar 

  • Bregman AS (1990) Auditory scene analysis. MIT Press, Cambridge

    Google Scholar 

  • Brookes MJ, Stevenson CM, Barnes GR, Hillebrand A, Simpson MI, Francis ST, Morris PG (2007) Beamformer reconstruction of correlated sources using a modified source model. Neuroimage 34:1454–1465

    Google Scholar 

  • Brugge JF, Nourski KV, Oya H, Reale RA, Kawasaki H, Steinschneider M, Howard MA 3rd (2009) Coding of repetitive transients by auditory cortex on Heschl’s gyrus. J Neurophysiol 102:2358–2374

    Google Scholar 

  • Butler RA (1968) Effect of changes in stimulus frequency and intensity on habituation of the human vertex potential. J Acoust Soc Am 44:945–950

    Google Scholar 

  • Carl D, Gutschalk A (2013) Role of pattern, regularity, and silent intervals in auditory stream segregation based on inter-aural time differences. Exp Brain Res 224:557–570

    Google Scholar 

  • Carver FW, Fuchs A, Jantzen KJ, Kelso JA (2002) Spatiotemporal analysis of the neuromagnetic response to rhythmic auditory stimulation: rate dependence and transient to steady-state transition. Clin Neurophysiol 113:1921–1931

    Google Scholar 

  • Chait M, Poeppel D, de Cheveigne A, Simon JZ (2007) Processing asymmetry of transitions between order and disorder in human auditory cortex. J Neurosci 27:5207–5214

    Google Scholar 

  • Chait M, Poeppel D, Simon JZ (2006) Neural response correlates of detection of monaurally and binaurally created pitches in humans. Cereb Cortex 16:835–848

    Google Scholar 

  • Chakalov I, Draganova R, Wollbrink A, Preissl H, Pantev C (2012) Modulations of neural activity in auditory streaming caused by spectral and temporal alternation in subsequent stimuli: a magneto encephalographic study. BMC Neuroscience 13:72

    Google Scholar 

  • Cherry C (1953) Some experiments on the recognition of speech, with one and two ears. J Acoust Soc Am 25:975–981

    Google Scholar 

  • Crone NE, Boatman D, Gordon B, Hao L (2001) Induced electrocorticographic gamma activity during auditory perception. Clin Neurophysiol 112:565–582

    Google Scholar 

  • Dau T, Wegner O, Mellert V, Kollmeier B (2000) Auditory brainstem responses with optimized chirp signals compensating basilar-membrane dispersion. J Acoust Soc Am 107:1530–1540

    Google Scholar 

  • Dehaene S, Changeux JP (2011) Experimental and theoretical approaches to conscious processing. Neuron 70:200–227

    Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222

    Google Scholar 

  • Diesch E, Luce T (2000) Topographic and temporal indices of vowel spectral envelope extraction in the human auditory cortex. J Cogn Neurosci 12:878–893

    Google Scholar 

  • Ding N, Simon JZ (2012a) Emergence of neural encoding of auditory objects while listening to competing speakers. Proc Nat Acad Sci USA 109:11854–11859

    Google Scholar 

  • Ding N, Simon JZ (2012b) Neural coding of continuous speech in auditory cortex during monaural and dichotic listening. J Neurophysiol 107:78–89

    Google Scholar 

  • Durlach NI, Mason CR, Kidd G Jr, Arbogast TL, Colburn HS, Shinn-Cunningham BG (2003) Note on informational masking. J Acoust Soc Am 113:2984–2987

    Google Scholar 

  • Dykstra AR, Halgren E, Thesen T, Carlson CE, Doyle W, Madsen JR, Eskandar EN, Cash SS (2011) Widespread brain areas engaged during a classical auditory streaming task revealed by intracranial EEG. Front Hum Neurosci 5:74

    Google Scholar 

  • Edwards E, Soltani M, Deouell LY, Berger MS, Knight RT (2005) High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. J Neurophysiol 94:4269–4280

    Google Scholar 

  • Elhilali M, Xiang J, Shamma SA, Simon JZ (2009) Interaction between attention and bottom-up saliency mediates the representation of foreground and background in an auditory scene. PLoS Biol 7:e1000129

    Google Scholar 

  • Eulitz C, Diesch E, Pantev C, Hampson S, Elbert T (1995) Magnetic and electric brain activity evoked by the processing of tone and vowel stimuli. J Neurosci 15:2748–2755

    Google Scholar 

  • Fishman YI, Steinschneider M (2012) Searching for the mismatch negativity in primary auditory cortex of the awake monkey: deviance detection or stimulus specific adaptation? J Neurosci 32:15747–15758

    Google Scholar 

  • Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40:859–869

    Google Scholar 

  • Galaburda A, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Compar Neurol 190:597–610

    Google Scholar 

  • Galambos R, Makeig S, Talmachoff PJ (1981) A 40-Hz auditory potential recorded from the human scalp. Proc Nat Acad Sci USA 78:2643–2647

    Google Scholar 

  • Garrido MI, Kilner JM, Stephan KE, Friston KJ (2009) The mismatch negativity: a review of underlying mechanisms. Clin Neurophysiol 120:453–463

    Google Scholar 

  • Gutschalk A, Brandt T, Bartsch A, Jansen C (2012) Comparison of auditory deficits associated with neglect and auditory cortex lesions. Neuropsychologia 50:926–938

    Google Scholar 

  • Gutschalk A, Hämäläinen MS, Melcher JR (2010) BOLD responses in human auditory cortex are more closely related to transient MEG responses than to sustained ones. J Neurophysiol 103:2015–2026

    Google Scholar 

  • Gutschalk A, Mase R, Roth R, Ille N, Rupp A, Hähnel S, Picton TW, Scherg M (1999) Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex. Clin Neurophysiol 110:856–868

    Google Scholar 

  • Gutschalk A, Micheyl C, Melcher JR, Rupp A, Scherg M, Oxenham AJ (2005) Neuromagnetic correlates of streaming in human auditory cortex. J Neurosci 25:5382–5388

    Google Scholar 

  • Gutschalk A, Micheyl C, Oxenham AJ (2008) Neural correlates of auditory perceptual awareness under informational masking. PLoS Biol 6:e138

    Google Scholar 

  • Gutschalk A, Oldermann K, Rupp A (2009) Rate perception and the auditory 40-Hz steady-state fields evoked by two-tone sequences. Hear Res 257:83–92

    Google Scholar 

  • Gutschalk A, Oxenham AJ, Micheyl C, Wilson EC, Melcher JR (2007a) Human cortical activity during streaming without spectral cues suggests a general neural substrate for auditory stream segregation. J Neurosci 27:13074–13081

    Google Scholar 

  • Gutschalk A, Patterson RD, Rupp A, Uppenkamp S, Scherg M (2002) Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. Neuroimage 15:207–216

    Google Scholar 

  • Gutschalk A, Patterson RD, Scherg M, Uppenkamp S, Rupp A (2004a) Temporal dynamics of pitch in human auditory cortex. Neuroimage 22:755–766

    Google Scholar 

  • Gutschalk A, Patterson RD, Scherg M, Uppenkamp S, Rupp A (2007b) The effect of temporal context on the sustained pitch response in human auditory cortex. Cereb Cortex 17:552–561

    Google Scholar 

  • Gutschalk A, Patterson RD, Uppenkamp S, Scherg M, Rupp A (2004b) Recovery and refractoriness of auditory evoked fields after gaps in click trains. Eur J Neurosci 20:3141–3147

    Google Scholar 

  • Gutschalk A, Scherg M, Picton TW, Mase R, Roth R, Ille N, Klenk A, Hähnel S (1998) Multiple source components of middle and late latency auditory evoked fields. In: Kakigi R, Hashimoto I (eds) Recent advances in human neurophysiology. Elsevier, Amsterdam, pp 270–278

    Google Scholar 

  • Gutschalk A, Uppenkamp S (2011) Sustained responses for pitch and vowels map to similar sites in human auditory cortex. Neuroimage 56:1578–1587

    Google Scholar 

  • Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Compar Neurol 441:197–222

    Google Scholar 

  • Halgren E, Marinkovic K, Chauvel P (1998) Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr Clin Neurophysiol 106:156–164

    Google Scholar 

  • Halgren E, Sherfey J, Irimia A, Dale AM, Marinkovic K (2011) Sequential temporo-fronto-temporal activation during monitoring of the auditory environment for temporal patterns. Hum Brain Mapp 32:1260–1276

    Google Scholar 

  • Hansen JC, Hillyard SA (1980) Endogenous brain potentials associated with selective auditory attention. Electroencephalogr Clin Neurophysiol 49:277–290

    Google Scholar 

  • Hari R, Aittoniemi K, Jarvinen ML, Katila T, Varpula T (1980) Auditory evoked transient and sustained magnetic fields of the human brain. Localization of neural generators. Exp Brain Res 40:237–240

    Google Scholar 

  • Hari R, Hämäläinen M, Joutsiniemi SL (1989) Neuromagnetic steady-state responses to auditory stimuli. J Acoust Soc Am 86:1033–1039

    Google Scholar 

  • Hari R, Kaila K, Katila T, Tuomisto T, Varpula T (1982) Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation. Electroencephalogr Clin Neurophysiol 54:561–569

    Google Scholar 

  • Hari R, Pelizzone M, Mäkelä JP, Hallstrom J, Leinonen L, Lounasmaa OV (1987) Neuromagnetic responses of the human auditory cortex to on- and offsets of noise bursts. Audiology 26:31–43

    Google Scholar 

  • Hashimoto I, Mashiko T, Yoshikawa K, Mizuta T, Imada T, Hayashi M (1995) Neuromagnetic measurements of the human primary auditory response. Electroencephalogr Clin Neurophysiol 96:348–356

    Google Scholar 

  • Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical signs of selective attention in the human brain. Science 182:177–180

    Google Scholar 

  • Imada T, Hari R, Loveless N, McEvoy L, Sams M (1993) Determinants of the auditory mismatch response. Electroencephalogr Clin Neurophysiol 87:144–153

    Google Scholar 

  • Imada T, Watanabe M, Mashiko T, Kawakatsu M, Kotani M (1997) The silent period between sounds has a stronger effect than the interstimulus interval on auditory evoked magnetic fields. Electroencephalogr Clin Neurophysiol 102:37–45

    Google Scholar 

  • Jääskeläinen IP, Ahveninen J, Bonmassar G, Dale AM, Ilmoniemi RJ, Levanen S, Lin FH, May P, Melcher J, Stufflebeam S, Tiitinen H, Belliveau JW (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proc Nat Acad Sci USA 101:6809–6814

    Google Scholar 

  • John MS, Lins OG, Boucher BL, Picton TW (1998) Multiple auditory steady-state responses (MASTER): stimulus and recording parameters. Audiology 37:59–82

    MATH  Google Scholar 

  • Joutsiniemi SL, Hari R, Vilkman V (1989) Cerebral magnetic responses to noise bursts and pauses of different durations. Audiology 28:325–333

    Google Scholar 

  • Kahlbrock N, Butz M, May ES, Schnitzler A (2012) Sustained gamma band synchronization in early visual areas reflects the level of selective attention. Neuroimage 59:673–681

    Google Scholar 

  • Kaiser J, Lutzenberger W, Preissl H, Ackermann H, Birbaumer N (2000) Right-hemisphere dominance for the processing of sound-source lateralization. J Neurosci 20:6631–6639

    Google Scholar 

  • Keceli S, Inui K, Okamoto H, Otsuru N, Kakigi R (2012) Auditory sustained field responses to periodic noise. BMC Neuroscience 13:7

    Google Scholar 

  • Königs L, Gutschalk A (2012) Functional lateralization in auditory cortex under informational masking and in silence. Eur J Neurosci 36:3283–3290

    Google Scholar 

  • Kretzschmar B, Gutschalk A (2010) A sustained deviance response evoked by the auditory oddball paradigm. Clin Neurophysiol 121:524–532

    Google Scholar 

  • Krumbholz K, Patterson RD, Seither-Preisler A, Lammertmann C, LĂĽtkenhoner B (2003) Neuromagnetic evidence for a pitch processing center in Heschl’s gyrus. Cereb Cortex 13:765–772

    Google Scholar 

  • Larson E, Lee AK (2012) The cortical dynamics underlying effective switching of auditory spatial attention. Neuroimage 64:365–370

    Google Scholar 

  • Lavie N (2006) The role of perceptual load in visual awareness. Brain Res 1080:91–100

    Google Scholar 

  • Liegeois-Chauvel C, Musolino A, Badier JM, Marquis P, Chauvel P (1994) Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroencephalogr Clin Neurophysiol 92:204–214

    Google Scholar 

  • Liegeois-Chauvel C, Musolino A, Chauvel P (1991) Localization of the primary auditory area in man. Brain 114(Pt 1A):139–151

    Google Scholar 

  • Linden DE (2005) The p300: where in the brain is it produced and what does it tell us? Neuroscientist 11:563–576

    Google Scholar 

  • Loveless N, Levanen S, Jousmaki V, Sams M, Hari R (1996) Temporal integration in auditory sensory memory: neuromagnetic evidence. Electroencephalogr Clin Neurophysiol 100:220–228

    Google Scholar 

  • LĂĽ ZL, Williamson SJ, Kaufman L (1992) Human auditory primary and association cortex have differing lifetimes for activation traces. Brain Res 572:236–241

    Google Scholar 

  • LĂĽtkenhöner B, Lammertmann C, Ross B, Pantev C (2000) Brain stem auditory evoked fields in response to clicks. NeuroReport 11:913–918

    Google Scholar 

  • LĂĽtkenhöner B, Steinstrater O (1998) High-precision neuromagnetic study of the functional organization of the human auditory cortex. Audiol Neurootology 3:191–213

    Google Scholar 

  • Mäkelä JP, Ahonen A, Hämäläinen M, Hari R, Ilmoniemi R, Kajola M, Knuutila J, Lounasmaa OV, McEvoy L, Salmelin R, Salonen O, Sams M, Simola J, Tesche C, Vasama JP (1993) Functional differences between auditory cortices of the two hemispheres revealed by whole-head neuromagnetic recordings. Hum Brain Mapp 1:48–56

    Google Scholar 

  • Mäkelä JP, Hämäläinen M, Hari R, McEvoy L (1994) Whole-head mapping of middle-latency auditory evoked magnetic fields. Electroencephalogr Clin Neurophysiol 92:414–421

    Google Scholar 

  • Mäkelä JP, Hari R (1987) Evidence for cortical origin of the 40 Hz auditory evoked response in man. Electroencephalogr Clin Neurophysiol 66:539–546

    Google Scholar 

  • Mäkelä JP, Hari R, Leinonen L (1988) Magnetic responses of the human auditory cortex to noise/square wave transitions. Electroencephalogr Clin Neurophysiol 69:423–430

    Google Scholar 

  • May P, Tiitinen H, Ilmoniemi RJ, Nyman G, Taylor JG, Näätänen R (1999) Frequency change detection in human auditory cortex. J Comput Neurosci 6:99–120

    MATH  Google Scholar 

  • May PJ, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47:66–122

    Google Scholar 

  • McEvoy L, Hari R, Imada T, Sams M (1993) Human auditory cortical mechanisms of sound lateralization: II. Interaural time differences at sound onset. Hear Res 67:98–109

    Google Scholar 

  • McEvoy L, Levanen S, Loveless N (1997) Temporal characteristics of auditory sensory memory: neuromagnetic evidence. Psychophysiology 34:308–316

    Google Scholar 

  • McEvoy L, Mäkelä JP, Hämäläinen M, Hari R (1994) Effect of interaural time differences on middle-latency and late auditory evoked magnetic fields. Hear Res 78:249–257

    Google Scholar 

  • Meyer K (2011) Primary sensory cortices, top-down projections and conscious experience. Prog Neurobiol 94:408–417

    Google Scholar 

  • Miller GA, Heise GA (1950) The trill threshold. J Acoust Soc Am 22:637–638

    Google Scholar 

  • Millman RE, Prendergast G, Hymers M, Green GG (2013) Representations of the temporal envelope of sounds in human auditory cortex: Can the results from invasive intracortical “depth” electrode recordings be replicated using non-invasive MEG “virtual electrodes”? Neuroimage 64:185–196

    Google Scholar 

  • Moore BCJ (2012) An introduction to the psychology of hearing. Emerald, Bingley

    Google Scholar 

  • Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13:684–701

    Google Scholar 

  • Morosan P, Schleicher A, Amunts K, Zilles K (2005) Multimodal architectonic mapping of human superior temporal gyrus. Anat embryol (Berlin) 210:401–406

    Google Scholar 

  • Näätänen R (1982) Processing negativity: an evoked-potential reflection of selective attention. Psychol Bull 92:605–640

    Google Scholar 

  • Näätänen R, Gaillard AW, Mantysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica (Amsterdam) 42:313–329

    Google Scholar 

  • Näätänen R, Kujala T, Winkler I (2011) Auditory processing that leads to conscious perception: a unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology 48:4–22

    Google Scholar 

  • Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425

    Google Scholar 

  • Näätänen R, Sams M, Alho K, Paavilainen P, Reinikainen K, Sokolov EN (1988) Frequency and location specificity of the human vertex N1 wave. Electroencephalogr Clin Neurophysiol 69:523–531

    Google Scholar 

  • Nourski KV, Brugge JF, Reale RA, Kovach CK, Oya H, Kawasaki H, Jenison RL, Howard MA 3rd (2013) Coding of repetitive transients by auditory cortex on posterolateral superior temporal gyrus in humans: an intracranial electrophysiology study. J Neurophysiol 109:1283–1295

    Google Scholar 

  • Obleser J, Lahiri A, Eulitz C (2004) Magnetic brain response mirrors extraction of phonological features from spoken vowels. J Cogn Neurosci 16:31–39

    Google Scholar 

  • Obleser J, Scott SK, Eulitz C (2006) Now you hear it, now you don’t: transient traces of consonants and their nonspeech analogues in the human brain. Cereb Cortex 16:1069–1076

    Google Scholar 

  • Okamoto H, Stracke H, Bermudez P, Pantev C (2011) Sound processing hierarchy within human auditory cortex. J Cogn Neurosci 23:1855–1863

    Google Scholar 

  • Okamoto H, Stracke H, Ross B, Kakigi R, Pantev C (2007a) Left hemispheric dominance during auditory processing in noisy environment. BMC Biol 5:52

    Google Scholar 

  • Okamoto H, Stracke H, Wolters CH, Schmael F, Pantev C (2007b) Attention improves population-level frequency tuning in human auditory cortex. J Neurosci 27:10383–10390

    Google Scholar 

  • Palomaki KJ, Tiitinen H, Mäkinen V, May PJ, Alku P (2005) Spatial processing in human auditory cortex: the effects of 3D, ITD, and ILD stimulation techniques. Cogn Brain Res 24:364–379

    Google Scholar 

  • Pantev C (1995) Evoked and induced gamma-band activity of the human cortex. Brain Topogr 7:321–330

    Google Scholar 

  • Pantev C, Elbert T, Makeig S, Hampson S, Eulitz C, Hoke M (1993) Relationship of transient and steady-state auditory evoked fields. Electroencephalogr Clin Neurophysiol 88:389–396

    Google Scholar 

  • Pantev C, Eulitz C, Elbert T, Hoke M (1994) The auditory evoked sustained field: origin and frequency dependence. Electroencephalogr Clin Neurophysiol 90:82–90

    Google Scholar 

  • Pantev C, Eulitz C, Hampson S, Ross B, Roberts LE (1996a) The auditory evoked “off” response: sources and comparison with the “on” and the “sustained” responses. Ear Hear 17:255–265

    Google Scholar 

  • Pantev C, Hoke M, Lehnertz K, LĂĽtkenhöner B, Anogianakis G, Wittkowski W (1988) Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroencephalogr Clin Neurophysiol 69:160–170

    Google Scholar 

  • Pantev C, LĂĽtkenhöner B, Hoke M, Lehnertz K (1986) Comparison between simultaneously recorded auditory-evoked magnetic fields and potentials elicited by ipsilateral, contralateral and binaural tone burst stimulation. Audiology 25:54–61

    Google Scholar 

  • Pantev C, Okamoto H, Ross B, Stoll W, Ciurlia-Guy E, Kakigi R, Kubo T (2004) Lateral inhibition and habituation of the human auditory cortex. Eur J Neurosci 19:2337–2344

    Google Scholar 

  • Pantev C, Roberts LE, Elbert T, Ross B, Wienbruch C (1996b) Tonotopic organization of the sources of human auditory steady-state responses. Hear Res 101:62–74

    Google Scholar 

  • Parkkonen L, Fujiki N, Mäkelä JP (2009) Sources of auditory brainstem responses revisited: contribution by magnetoencephalography. Hum Brain Mapp 30:1772–1782

    Google Scholar 

  • Patterson RD, Uppenkamp S, Johnsrude IS, Griffiths TD (2002) The processing of temporal pitch and melody information in auditory cortex. Neuron 36:767–776

    Google Scholar 

  • Pelizzone M, Hari R, Mäkelä JP, Huttunen J, Ahlfors S, Hämäläinen M (1987) Cortical origin of middle-latency auditory evoked responses in man. Neurosci. Lett. 82:303–307

    Google Scholar 

  • Picton TW, Hillyard SA, Krausz HI, Galambos R (1974) Human auditory evoked potentials. I. Evaluation of components. Electroencephalogr Clin Neurophysiol 36:179–190

    Google Scholar 

  • Poghosyan V, Ioannides AA (2008) Attention modulates earliest responses in the primary auditory and visual cortices. Neuron 58:802–813

    Google Scholar 

  • Prendergast G, Johnson SR, Green GG (2010) Temporal dynamics of sinusoidal and non-sinusoidal amplitude modulation. Eur J Neurosci 32:1599–1607

    Google Scholar 

  • Pressnitzer D, Patterson RD, Krumbholz K (2001) The lower limit of melodic pitch. J Acoust Soc Am 109:2074–2084

    Google Scholar 

  • Ray S, Maunsell JH (2011) Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol 9:e1000610

    Google Scholar 

  • Reite M, Edrich J, Zimmermann JT, Zimmerman JE (1978) Human magnetic auditory evoked fields. Electroenceph Clin Neurophysiol 45:114–117

    Google Scholar 

  • Reite M, Zimmerman JT, Zimmerman JE (1981) Magnetic auditory evoked fields: interhemispheric asymmetry. Electroencephalogr Clin Neurophysiol 51:388–392

    Google Scholar 

  • Rif J, Hari R, Hämäläinen MS, Sams M (1991) Auditory attention affects two different areas in the human supratemporal cortex. Electroencephalogr Clin Neurophysiol 79:464–472

    Google Scholar 

  • Ritter S, Dosch HG, Specht HJ, Rupp A (2005) Neuromagnetic responses reflect the temporal pitch change of regular interval sounds. Neuroimage 27:533–543

    Google Scholar 

  • Rivier F, Clarke S (1997) Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. Neuroimage 6:288–304

    Google Scholar 

  • Roberts TP, Poeppel D (1996) Latency of auditory evoked M100 as a function of tone frequency. NeuroReport 7:1138–1140

    Google Scholar 

  • Rogers RL, Baumann SB, Papanicolaou AC, Bourbon TW, Alagarsamy S, Eisenberg HM (1991) Localization of the P3 sources using magnetoencephalography and magnetic resonance imaging. Electroencephalogr Clin Neurophysiol 79:308–321

    Google Scholar 

  • Romani GL, Williamson SJ, Kaufman L (1982) Tonotopic organization of the human auditory cortex. Science 216:1339–1340

    Google Scholar 

  • Ross B, Draganova R, Picton TW, Pantev C (2003) Frequency specificity of 40-Hz auditory steady-state responses. Hear Res 186:57–68

    Google Scholar 

  • Ross B, Herdman AT, Pantev C (2005a) Right hemispheric laterality of human 40 Hz auditory steady-state responses. Cereb Cortex 15:2029–2039

    Google Scholar 

  • Ross B, Herdman AT, Pantev C (2005b) Stimulus induced desynchronization of human auditory 40-Hz steady-state responses. J Neurophysiol 94:4082–4093

    Google Scholar 

  • Ross B, Picton TW, Herdman AT, Pantev C (2004) The effect of attention on the auditory steady-state response. Neurol Clin Neurophysiol 2004:22

    Google Scholar 

  • Ross B, Picton TW, Pantev C (2002) Temporal integration in the human auditory cortex as represented by the development of the steady-state magnetic field. Hear Res 165:68–84

    Google Scholar 

  • Rupp A, Gutschalk A, Hack S, Scherg M (2002a) Temporal resolution of the human primary auditory cortex in gap detection. NeuroReport 13:2203–2207

    Google Scholar 

  • Rupp A, Gutschalk A, Uppenkamp S, Scherg M (2004) Middle latency auditory-evoked fields reflect psychoacoustic gap detection thresholds in human listeners. J Neurophysiol 92:2239–2247

    Google Scholar 

  • Rupp A, Hack S, Gutschalk A, Schneider P, Picton TW, Stippich C, Scherg M (2000) Fast temporal interactions in human auditory cortex. NeuroReport 11:3731–3736

    Google Scholar 

  • Rupp A, Uppenkamp S, Gutschalk A, Beucker R, Patterson RD, Dau T, Scherg M (2002b) The representation of peripheral neural activity in the middle-latency evoked field of primary auditory cortex in humans(1). Hear Res 174:19–31

    Google Scholar 

  • Salminen NH, May PJ, Alku P, Tiitinen H (2009) A population rate code of auditory space in the human cortex. PLoS ONE 4:e7600

    Google Scholar 

  • Sams M, Hämäläinen M, Hari R, McEvoy L (1993a) Human auditory cortical mechanisms of sound lateralization: I. Interaural time differences within sound. Hear Res 67:89–97

    Google Scholar 

  • Sams M, Hari R, Rif J, Knuutila J (1993b) The human auditory sensory memory trace persists about 10 s: neuromagnetic evidence. J Cogn Neurosci 5:363–370

    Google Scholar 

  • Saupe K, Schröger E, Andersen SK, MĂĽller MM (2009) Neural mechanisms of intermodal sustained selective attention with concurrently presented auditory and visual stimuli. Front Hum Neurosci 3:58

    Google Scholar 

  • Schadwinkel S, Gutschalk A (2010) Activity associated with stream segregation in human auditory cortex is similar for spatial and pitch cues. Cereb Cortex 20:2863–2873

    Google Scholar 

  • Scherg M, Hari R, Hämäläinen MS (1989) Frequency-specific sources of the auditory N19-P30-P50 response detected by a multiple source analysis of evoked magnetic fields and potentials. In: Williamson SJ, Hoke M, Sroink G, Kotani M (eds) Advances in biomagnetism. Plenum Press, New York

    Google Scholar 

  • Scherg M, von Cramon D (1985) A new interpretation of the generators of BAEP waves I-V: results of a spatio-temporal dipole model. Electroencephalogr Clin Neurophysiol 62:290–299

    Google Scholar 

  • Scherg M, Von Cramon D (1986) Evoked dipole source potentials of the human auditory cortex. Electroencephalogr Clin Neurophysiol 65:344–360

    Google Scholar 

  • Schnupp JW, Nelken I, King AJ (2011) Auditory neuroscience: making sense of sound. MIT Press, Cambridge, MA

    Google Scholar 

  • Schönwiesner M, Novitski N, Pakarinen S, Carlson S, Tervaniemi M, Näätänen R (2007) Heschl’s gyrus, posterior superior temporal gyrus, and mid-ventrolateral prefrontal cortex have different roles in the detection of acoustic changes. J Neurophysiol 97:2075–2082

    Google Scholar 

  • Sedley W, Teki S, Kumar S, Overath T, Barnes GR, Griffiths TD (2012) Gamma band pitch responses in human auditory cortex measured with magnetoencephalography. Neuroimage 59:1904–1911

    Google Scholar 

  • Shaw ME, Hämäläinen MS, Gutschalk A (2013) How anatomical asymmetry of human auditory cortex can lead to a rightward bias in auditory evoked fields. Neuroimage 74:22–29

    Google Scholar 

  • Sieroka N, Dosch HG, Specht HJ, Rupp A (2003) Additional neuromagnetic source activity outside the auditory cortex in duration discrimination correlates with behavioural ability. Neuroimage 20:1697–1703

    Google Scholar 

  • Snyder JS, Alain C, Picton TW (2006) Effects of attention on neuroelectric correlates of auditory stream segregation. J Cogn Neurosci 18:1–13

    Google Scholar 

  • Spierer L, Bellmann-Thiran A, Maeder P, Murray MM, Clarke S (2009) Hemispheric competence for auditory spatial representation. Brain 132:1953–1966

    Google Scholar 

  • Stecker GC, Harrington IA, Middlebrooks JC (2005) Location coding by opponent neural populations in the auditory cortex. PLoS Biol 3:e78

    Google Scholar 

  • Steinmann I, Gutschalk A (2011) Potential fMRI correlates of 40-Hz phase locking in primary auditory cortex, thalamus and midbrain. Neuroimage 54:495–504

    Google Scholar 

  • Steinmann I, Gutschalk A (2012) Sustained BOLD and theta activity in auditory cortex are related to slow stimulus fluctuations rather than to pitch. J Neurophysiol 107:3458–3467

    Google Scholar 

  • Steinschneider M, Fishman YI, Arezzo JC (2008) Spectrotemporal Analysis of Evoked and Induced Electroencephalographic Responses in Primary Auditory Cortex (A1) of the Awake Monkey. Cereb Cortex 18:610–625

    Google Scholar 

  • Steinschneider M, Tenke CE, Schroeder CE, Javitt DC, Simpson GV, Arezzo JC, Vaughan HG Jr (1992) Cellular generators of the cortical auditory evoked potential initial component. Electroencephalogr Clin Neurophysiol 84:196–200

    Google Scholar 

  • Stevens KN (2000) Acoustic phonetics. MIT Press, Cambridge

    Google Scholar 

  • Todorovic A, van Ede F, Maris E, de Lange FP (2011) Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: an MEG study. J Neurosci 31:9118–9123

    Google Scholar 

  • Uppenkamp S, Johnsrude IS, Norris D, Marslen-Wilson W, Patterson RD (2006) Locating the initial stages of speech-sound processing in human temporal cortex. Neuroimage 31:1284–1296

    Google Scholar 

  • Van Noorden LPAS (1975) Temporal coherence in the perception of tone sequences. University of Technology, Eindhoven

    Google Scholar 

  • Wacongne C, Changeux JP, Dehaene S (2012) A neuronal model of predictive coding accounting for the mismatch negativity. J Neurosci 32:3665–3678

    Google Scholar 

  • Wang Y, Ding N, Ahmar N, Xiang J, Poeppel D, Simon JZ (2012) Sensitivity to temporal modulation rate and spectral bandwidth in the human auditory system: MEG evidence. J Neurophysiol 107:2033–2041

    Google Scholar 

  • Weisz N, Lecaignard F, MĂĽller N, Bertrand O (2012) The modulatory influence of a predictive cue on the auditory steady-state response. Hum Brain Mapp 33:1417–1430

    Google Scholar 

  • Wiegand K, Gutschalk A (2012) Correlates of perceptual awareness in human primary auditory cortex revealed by an informational masking experiment. Neuroimage 61:62–69

    Google Scholar 

  • Woldorff MG, Gallen CC, Hampson SA, Hillyard SA, Pantev C, Sobel D, Bloom FE (1993) Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proc Nat Acad Sci USA 90:8722–8726

    Google Scholar 

  • Yost WA, Patterson R, Sheft S (1996) A time domain description for the pitch strength of iterated rippled noise. J Acoust Soc Am 99:1066–1078

    Google Scholar 

  • Young ED, Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J Acoust Soc Am 66:1381–1403

    Google Scholar 

  • Yrttiaho S, Alku P, May PJ, Tiitinen H (2009) Representation of the vocal roughness of aperiodic speech sounds in the auditory cortex. J Acoust Soc Am 125:3177–3185

    Google Scholar 

  • Yvert B, Crouzeix A, Bertrand O, Seither-Preisler A, Pantev C (2001) Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans. Cereb Cortex 11:411–423

    Google Scholar 

Download references

Acknowledgements

The author is grateful to Andrew Dykstra for many helpful comments and suggestions on the manuscript. Supported by Bundesministerium fĂĽr Bildung and Forschung (BMBF, grant 01EV0712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gutschalk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gutschalk, A. (2014). MEG Auditory Research. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33045-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33045-2_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33044-5

  • Online ISBN: 978-3-642-33045-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics