Skip to main content

Electric and Magnetic Fields of the Brain

  • Chapter
  • First Online:
Magnetoencephalography
  • 2433 Accesses

Abstract

Electroencephalography (EEG) and Magnetoencephalography (MEG) provide two noninvasive methods to learn about the spatial and temporal behavior of neuronal currents. In this tutorial chapter we present the physics and mathematics needed to interpret such measurements. The frequencies present in neuronal activity are sufficiently low that Maxwell’s equations for electromagnetism can be approximated by omitting the terms involving time derivatives. In this ‘quasistatic’ approximation the electric and magnetic fields follow the time dependence of the neuronal current. The “Forward Problem” consists of solving for these fields on the surface of the scalp and just outside the head, for any assumed neuronal current distribution. It requires a knowledge of the ‘head model’, namely the shapes and electrical conductivities of the main head compartments, i.e., the brain, skull, and scalp, and possibly the cerebrospinal fluid. Analytical and numerical methods for doing this are discussed. In the “Inverse Problem” one tries to deduce the neuronal current distribution from EEG and/or MEG measurements on human subjects. The factors that contribute to the non-uniqueness of the solution are discussed, and the methods that are actually employed to obtain current distributions are described. The standard procedure is to assume one or more current distributions, solve the forward problem for each one, and compare them with the data. Various criteria for calculating how well they agree are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achim A, Recher F, Saint-Hilaire J-M (1991) Methodical consideration for the evaluation of spatio-temporal source models. Electroenceph. Clin. Neurophysiol 79:227–240

    Article  Google Scholar 

  • Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal Process Mag 18(6):14–30

    Article  Google Scholar 

  • Barnard A, Duck I, Lynn M (1967) The application of electromagnetic theory to electrocardiology. I. derivation of the integral equations. Biophys J 7:443–462

    Article  Google Scholar 

  • Baumann S, Wozny D, Kelly S, Meno F (1997) The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng 44(3):220–223

    Article  Google Scholar 

  • Brenner D, Lipton J, Kaufman L, Williamson S (1978) Somatically evoked magnetic fields of the human brain. Science 199:81–83

    Article  Google Scholar 

  • Bronzan J (1971) The magnetic scalar potential. Amer J Phys 39:1357–1359

    Article  Google Scholar 

  • Chen W, Wong KM, Reilly JP (1991) Detection of number of signals: a predicted eigen-threshold approach. IEEE Signal Process 39:1088–1098

    Article  Google Scholar 

  • Cohen D, Cuffin BN (1991) EEG versus MEG localization accuracy: theory and experiment. Brain Topogr 4:95–103

    Article  Google Scholar 

  • Cramer H (1946) Mathematical methods of statistics. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Cuffin BN, Cohen D (1977) Magnetic fields of a dipole in special volume conductor shapes. IEEE Trans Biomed Eng 24:372–381

    Article  Google Scholar 

  • Geselowitz D (1967) On bioelectric potentials in an inhomogeneous volume conductor. Biophys J 7(1):1–11

    Article  Google Scholar 

  • Geselowitz D (1970) On the magnetic field generated outside an inhomogeneous volume conductor by internal current sources. IEEE Trans Magn 6(2):346–347

    Article  Google Scholar 

  • Grynszpan F, Geselowitz DB (1973) Model studies of the magnetocardiogram. Biophys J 13:911–925

    Article  Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Revs Mod Phys 65(2):413–497

    Google Scholar 

  • Hämäläinen M, Sarvas J (1989) Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans Biomad Eng 36:165–171

    Article  Google Scholar 

  • Heller L, Ranken DM, Best E (2004) The magnetic field inside special conducting geometries due to internal current. IEEE Trans Biomed Eng 51:1310–1318

    Article  Google Scholar 

  • Heller L, van Hulsteyn D (1992) Brain stimulation using electromagnetic sources: theoretical aspects. Biophys J 63(1):129–138

    Article  Google Scholar 

  • Helmholtz HV (1853) Uber einige gesetze der vertheilung elektrischer strome in korperlichen leitern, mit anwendung auf die thierisch-elektrischen versuche. Ann Phys Chem 89:211–233, 353–377

    Google Scholar 

  • Huang M, Aine CJ, Supek S, Best E, Ranken D, Flynn ER (1998) Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography. Electroencephalogr Clin Neurophysiol 108:32–44

    Article  Google Scholar 

  • Huang M, Davis LE, Aine C, Weisend M, Harrington D, Christener R, Stephen J, Edgar JC, Herman M, Meyer J, Paulson K, Martin K, Lee RR (2004) MEG response to median nerve stimulation correlates with recovery of sensory and motor function after stroke. Clin Neurophysiol 115:820–833

    Article  Google Scholar 

  • Huang MX, Mosher JC, Leahy RM (1999) A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG. Phys Med Biol 44:423–440

    Article  Google Scholar 

  • Ilmoniemi R, Hamalainen MS, Knuutila J (1985) The forward and inverse problems in the spherical model. In: Weinberg H, Stroink G, Katila T (eds) Proceedings of biomagnetism: applications and theory journal, Pergamon, New York, pp 278–282

    Google Scholar 

  • Kraus RH, Volegov P, Maharajh K, Espy MA, Matlashov AN, Flynn ER (2002) Performance of a novel squid-based superconducting imaging-surface magnetoencephalography system. Physica C 368:18–23

    Article  Google Scholar 

  • Levenberg K (1944) A method for the solution of certain problems in least squares. Quart Appl Math 2:164–168

    MATH  MathSciNet  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441

    Article  MATH  MathSciNet  Google Scholar 

  • Medvick P, Lewis P, Aine C, Flynn E (1989) Monte carlo analysis of localization errors in magnetoencephalography. In: Williamson SJ, Hoke M, Stroink G, Kotani M (eds) Advances in biomagnetism. Plenum, New York, pp 543–546

    Chapter  Google Scholar 

  • Mosher JC, Spencer ME, Leahy RM, Lewis PC (1992) Error bounds for MEG and EEG source localization. Electroencephalogr Clin Neurophysiol 86:303–321

    Article  Google Scholar 

  • Nelder JA, Mead RA (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  MATH  Google Scholar 

  • Oostendorp T, Delbeke J, Stegman D (2000) The conductivity of the human skull: results of in vivo and in vitro measurements. IEEE Trans Biomed Eng 47(11):1487–1492

    Article  Google Scholar 

  • Plis SM, George JS, Jun SC, Ranken DM, Volegov PL, Schmidt DM (2007) Probabalistic forward model for electroencephalography source analysis. Phys Med Biol 52:5309–5327

    Article  Google Scholar 

  • Ranken D, Best E, Schmidt D, George J, Wood C, Huang M (2002) MEG/EEG forward and inverse modeling using mri view. In: Nowak H, Haueisen J, Giebler F, Juonker R (Eds.) Proceedings of the 13th international conference on biomagnetism, pp 324–331

    Google Scholar 

  • Ranken D, Stephen J, George J (2004) MUSIC seeded multii-dipole MEG modeling using the constrained start spatio-temporal modeling procedure. Neurol Clin Neurophysiol 80:1–6

    Google Scholar 

  • Ranken DM, George J (1993) MRIVIEW: an interactive computational tool for investigation of brain structure and function. In: Proceedings of IEEE visualization ‘93, IEEE Computer Society Press, p 324–331

    Google Scholar 

  • Rao R (1945) Information and the accuracy attainable in the estimation of statistical parameters. Bull Calcutta Math Soc 37:81–91

    MATH  MathSciNet  Google Scholar 

  • Rush S, Driscoll D (1969) EEG electrode sensitivity–an application of reciprocity. IEEE Trans Biomed Eng 16(1):15–22

    Article  Google Scholar 

  • Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32(1):11–22

    Article  Google Scholar 

  • Schlitt HA, Heller L, Aaron R, Best E, Ranken DM (1995) Evaluation of boundary element methods for the eeg forward problem: effect of linear interpolation. IEEE Trans Biomed Eng 42(1):52–58

    Article  Google Scholar 

  • Supek S, Aine CJ (1993) Simulation studies of multiple dipole neuromagmetic source localization: model order and limits of source resolution. IEEE Trans Biomed Eng 40:459–540

    Article  Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solution of Ill-posed Problems. Winston & Sons, Washington

    Google Scholar 

  • Tomita S, Kajihara S, Kondo Y, Yoshida Y, Shibata K, Kado H (1996) Influence of head model in biomagnetic source localization. Brain Topog 8:337–340

    Article  Google Scholar 

  • Tucker DM (1993) Spatial sampling of head electrical fields: the geodesic sensor net. Electroencephalogr Clin Neurophysiol 87(3):154–163

    Article  Google Scholar 

  • van Oosterom A, Strackee J (1983) The solid angle of a plane triangle. IEEE Trans Biomed Eng 30:125

    Google Scholar 

  • Vladimirov VS (1971) Equations of mathematical Physics. Marcel Dekker, New York

    Google Scholar 

Download references

Acknowledgments

Authors (L. H. and P. V.) thank D. M. Ranken for Fig. 2, extraction of the cortical surface from the MRI data and fruitful discussions with respect to multiple dipole localization techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Heller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heller, L., Volegov, P. (2014). Electric and Magnetic Fields of the Brain. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33045-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33045-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33044-5

  • Online ISBN: 978-3-642-33045-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics