Skip to main content

Whole-Head Child MEG System and Its Applications

  • Chapter
  • First Online:
Magnetoencephalography
  • 2329 Accesses

Abstract

Whole-head magnetoencephalography (MEG) systems to study cognitive processing in young children have recently been developed. The child MEG system has a helmet-shaped sensor array designed to fit child-sized heads. The sensor array comprises 64 or more LTS-SQUID axial-type gradiometric magnetometers with a baseline length of 50 mm, arranged about 100 mm from the center of the child’s head. The sensor array is installed in a helmet of a horizontal dewar with a head circumference of about 530 mm, which was determined on the basis of a preliminary investigation on the standard size of preschool children’s heads. In this chapter, the details of the child MEG system and its applications to auditory brain functions such as language acquisition are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi Y, Kawai J, Uehara G, Miyamoto M, Tomizawa S, Kawabata S (2007) A 75-ch SQUID biomagnetometer system for human cervical spinal cord evoked field. IEEE Trans Appl Supercond 17(4):3867–3873

    Article  Google Scholar 

  • Adachi Y, Miyamoto M, Kawai J, Kawabata M, Higuchi M, Ogata D, Uehara G, Ogata H, Kado H, Haruta Y, Tesan G (2010) Development of a whole-head child MEG system. IFMBE Proc 28:35–38

    Article  Google Scholar 

  • Cheyne DO (2012) MEG studies of sensorimotor rhythms: A review. Exp Neurol. doi:10.1016/j.expneurol.2012.08.030

    Google Scholar 

  • Drung D, Cantor R, Peters M, Scheer HJ, Koch H (1990) Low-noise high-speed dc superconducting quantum interference device magnetometer with simplified feedback electronics. Appl Phys Lett 57(4):406–408

    Article  Google Scholar 

  • Erné SN, Narci L, Pizzella V, Romani G (1987) The positioning problem in biomagnetic measurements: a solution for array of superconducting sensors. IEEE Trans Mag MAG-23:1319–1322

    Google Scholar 

  • Gross J, Baillet S, Barnes GR, Henson RN, Hillebrand A, Jensen O, Jerbi K, Litvak V, Maess B, Oostenveld R, Parkkonen L, Taylor JR, Wassenhove V, Wibral M, Schoffelen JM (2013) Good practice for conducting and reporting MEG research. Neuroimage 65:349–363

    Article  Google Scholar 

  • Higuchi M, Chinone K, Ishikawa N, Kado H, Kasai N, Nakanishi M, Koyanagi M, Ishibashi Y (1989) The position of magnetometer pick up coil in dewar by artificial signal source, in advance in Biomagnetism. In: Proceedings of the 7th international conference on Biomagnetism. New York, pp 701–704

    Google Scholar 

  • Jaycox JM, Ketchen MB (1981) Planar coupling scheme for ultra low noise DC SQUIDs. IEEE Trans Mag M-17:400–403

    Google Scholar 

  • Johnson BW, Crain S, Thornton R, Tesan G, Reid M (2010) Measurement of brain function in pre-school children using a custom sized whole-head MEG sensor array. Clin Neurophysiol 121:340–349

    Article  Google Scholar 

  • Kado H (1999) Method of assembling a magnetomeasuring apparatus, US patent, Patent number 5,896,645

    Google Scholar 

  • Kado H, Higuchi M, Shimogawara M, Haruta Y, Adachi Y, Kawai J, Ogata H, Uehara G (1999) Magnetoencephalogram system developed at KIT. IEEE Trans Appl Supercond 9(2):4057–4062

    Article  Google Scholar 

  • Ketchen MB, Jaycox JM (1982) Ultra-low noise tunnel junction dc SQUID with a tightly coupled planar input coil. Appl Phys Lett 40:736–738

    Article  Google Scholar 

  • Kikuchi M, Shitamichi K, Yoshimura Y, Ueno S, Remijn G, Hirosawa T, Munesue T, Tsubokawa T, Haruta Y, Oi M, Higashida H, Minabe Y (2011) Lateralized theta wave connectivity and language performance in 2- to 5-year-old children. J Neurosci 31(42):14984–14988

    Article  Google Scholar 

  • Yoshimura Y, Kikuchi M, Shitamichi K, Ueno S, Remijn GB, Haruta Y, Oi M, Munesue T, Tsubokawa T, Higashida H, Minabe Y (2012) Language performance and auditory evoked fields in 2- to 5-year-old children. Eur J Neurosci 35:644–650

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Adachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adachi, Y., Haruta, Y. (2014). Whole-Head Child MEG System and Its Applications. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33045-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33045-2_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33044-5

  • Online ISBN: 978-3-642-33045-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics