Skip to main content

MEG-SIM Web Portal: A Database of Realistic Simulated and Empirical MEG Data for Testing Algorithms

  • Chapter
  • First Online:

Abstract

MEG is a noninvasive measure of electrophysiological brain activity which provides excellent temporal and high spatial resolution. Because of its uniquely high temporal resolution relative to the more commonly used hemodynamic-based measures (fMRI, PET), the usefulness of MEG as a complementary neuroimaging method is becoming more widely recognized, particularly in the investigation of functional connectivity within and between large-scale brain networks. However, the available analysis methods for solving the inverse problem for MEG have yet to be compared and standardized. A comparison of analysis methods is further complicated by the fact that the different MEG systems have different data formats, noise cancellation methods, and sensor configurations. In order to facilitate this process, we established a website containing an extensive series of realistic simulated data for testing purposes (http://cobre.mrn.org/megsim/). In addition, we assert the usefulness of these datasets for training purposes, as they will provide an unambiguous answer to whether a trainee is correctly carrying out analyses. Here we present a brief rationale and description of the testbed created, including cases emphasizing functional connectivity (e.g., oscillatory activity) and the Default Mode Network (DMN). They are suitable for use with a wide assortment of analyses including equivalent current dipole (ECD), minimum norm, beamformers, independent component analysis (ICA), Granger causality/directed transfer function, and single-trial methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aine C, Huang M, Stephen J, Christner R (2000) Multistart algorithms for MEG empirical data analysis reliably characterize locations and time courses of multiple sources. NeuroImage 12:159–172

    Article  Google Scholar 

  • Aine CJ, Stephen JM, Christner R, Hudson D, Best E (2003) Task relevance enhances early transient and late slowwave activity of distributed cortical sources. J Comput Neurosci 15:203–221

    Article  Google Scholar 

  • Aine C, Adair J, Knoefel J, Hudson D, Qualls C, Kovacevic S et al (2005) Temporal dynamics of age-related differences in auditory incidental verbal learning. Cogn Brain Res 24:1–18

    Article  Google Scholar 

  • Aine CJ, Woodruff CC, Knoefel JE, Adair JC, Hudson D, Qualls C et al (2006) Aging: compensation or maturation? NeuroImage 32:1891–1904

    Article  Google Scholar 

  • Aine CJ, Bryant JE, Knoefel JE, Adair JC, Hart B, Donahue CH et al (2010) Different strategies for auditory word recognition in healthy versus normal aging. NeuroImage 49:3319–3330

    Article  Google Scholar 

  • Aine C, Sanfratello L, Ranken D, Best E, MacArthur J, Wallace T, Gilliam K, Donahue C, Montano R, Bryant J, Scott A, Stephen J (2012) MEG-SIM: a web portal for testing MEG analysis methods using realistic simulated and empirical data. Neuroinformatics 10:141–158

    Article  Google Scholar 

  • Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24:663–676

    Google Scholar 

  • Baillet S, Mosher J, Leahy R (2001) Electromagnetic brain mapping. IEEE Signal Process Mag 18(6):14–30

    Google Scholar 

  • Brookes MJ, Stevenson CM, Barnes GR, Hillebrand A, Simpson MI, Francis ST et al (2007) Beamformer reconstruction of correlated sources using a modified source model. NeuroImage 34:1454–1465

    Article  Google Scholar 

  • Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stevenson MC, Barnes GR, Smith SM, Morris PG (2011) Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc. Nat Acad Sci USA 108(40):16783–16788

    Article  Google Scholar 

  • Brooks D, Macleod R (2005) Bayesian solutions and performance analysis in bioelectric inverse problems. IEEE Trans Biomed Eng 52(6):1009–1020

    Google Scholar 

  • Dalal SS, Sekihara K, Nagarajan SS (2006) Modified beamformers for coherent source region suppression. IEEE Trans Biomed Eng 53:1357–1363

    Article  Google Scholar 

  • Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD et al (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26:55–67

    Article  Google Scholar 

  • David O, Garnero L, Cosmelli D, Varela FJ (2002) Estimation of neural dynamics from MEG/EEG cortical current density maps: application to the reconstruction of large-scale cortical synchrony. IEEE BME 49:975–987

    Article  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. J Neurosci Methods 134:9–21

    Article  Google Scholar 

  • Diwakar M, Huang MX, Srinivasan R, Harrington DL, Robb A, Angeles A et al (2011) Dual-Core Beamformer for obtaining highly correlated neuronal networks in MEG. NeuroImage 54:253–263

    Article  Google Scholar 

  • de Pasquale F,  Della Penna S, Snyder AZ, Lewis C, Mantini, D, Marzetti L, Belardinelli P, Ciancetta L, Pizzella V, Romani GL, Corbetta M (2010)  Temporal dynamics of spontaneous MEG activity in brain networks. PNAS 107(13):6040–6045

    Google Scholar 

  • Fuchs M, Wagner M, Kohler T, Wischmann HA (1999) Linear and nonlinear current density reconstructions. J Clin Neurophysiol 16:267–295

    Article  Google Scholar 

  • Golubic SJ, Susac A, Grilj V, Ranken D, Huonker R, Haueisen J et al (2011) Size matters: MEG empirical and simulation study on source localization of the earliest visual activity in the occipital cortex. Med Biol Eng Compu 49:545–554

    Article  Google Scholar 

  • Greenblatt RE, Ossadtchi A, Pflieger ME (2005) Local linear estimators for the bioelectromagnetic inverse problem. IEEE Trans Signal Process 53:3403–3412

    Article  MathSciNet  Google Scholar 

  • Hämäläinen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Compu 32:35–42

    Article  Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi R, Knuutila J, Lounasmaa O (1993) Magnetoencephalography? theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Article  Google Scholar 

  • Huang M, Aine CJ, Supek S, Best E, Ranken D, Flynn ER (1998) Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography. Electroencephalogr Clin Neurophysiol 108:32–44

    Article  Google Scholar 

  • Huang MX, Dale AM, Song T, Halgren E, Harrington DL, Podgorny I et al (2006) Vector-based spatial-temporal minimum L1-norm solution for MEG. NeuroImage 31:1025–1037

    Article  Google Scholar 

  • Hui HB, Leahy RM (2006) Linearly constrained MEG beamformers for MVAR modeling of cortical interactions. In: 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, pp 237–240

    Google Scholar 

  • Hui HB, Pantazis D, Bressler SL, Leahy RM (2010) Identifying true cortical interactions in MEG using the nulling beamformer. NeuroImage 49:3161–3174

    Article  Google Scholar 

  • Ioannides AA, Bolton JP, Clarke CJS (1990) Continous probabilistic solutions to the biomagnetic inverse problem. Inverse Prob 6:523–542

    Article  MATH  Google Scholar 

  • Jun SC, George JS, Paré-Blagoev J, Plis SM, Ranken DM, Schmidt DM et al (2005) Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data. NeuroImage 28:84–98

    Article  Google Scholar 

  • Kovacevic S, Qualls C, Adair J, Hudson D, Woodruff C, Knoefel J et al (2005) Age-related effects on superior temmporal gyrus activity during an oddball task. NeuroReport 16:1075–1079

    Article  Google Scholar 

  • Liljestrom M, Kujala J, Jensen O, Salmelin R (2005) Neuromagnetic localization of rhythmic activity in the human brain: a comparison of three methods. NeuroImage 25:734–745

    Article  Google Scholar 

  • Lin FH, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, Hämäläinen MS (2006) Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. NeuroImage 31:160–171

    Article  Google Scholar 

  • Liu AK, Belliveau JW, Dale AM (1998) Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc Natl Acad Sci USA 95:8945–8950

    Article  Google Scholar 

  • Mattout J, Phillips C, Penny WD, Rugg MD, Friston KJ (2006) MEG source localization under multiple constraints: an extended Bayesian framework. NeuroImage 30:753–767

    Article  Google Scholar 

  • Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave de Peralta R (2004) EEG source imaging. Clin Neurophysiol 115:2195–2222

    Article  Google Scholar 

  • Moiseev A, Gaspar JM, Schneider JA, Herdman AT (2011) Application of multi-source minimum variance beamformers for reconstruction of correlated neural activity. NeuroImage 58:481–489

    Article  Google Scholar 

  • Mosher JC, Lewis PS, Leahy RM (1992) Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans Biomed Eng 39:541–557

    Article  Google Scholar 

  • Nelder J, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  MATH  Google Scholar 

  • Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12

    Google Scholar 

  • Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65

    Article  Google Scholar 

  • Pascual-Marqui RD, Lehmann D, Koenig T, Kochi K, Merlo MC, Hell D et al (1999) Low resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, productive schizophrenia. Psychiatry Res 90:169–179

    Article  Google Scholar 

  • Portin K, Vanni S, Virsu V, Hari R (1999) Stronger occipital cortical activation to lower than upper visual field stimuli. Neuromagnetic recordings. Exp Brain Res 124:287–294

    Article  Google Scholar 

  • Ranken D, George JS (1993) MRIVIEW: an interactive computational tool for investigation of brain structure and function. In: Proceedings of the IEEE visualization ’93. IEEE Computer Society Press, pp 324–331

    Google Scholar 

  • Ranken D, Best E, Schmidt DM, George JS, Wood CC, Huang M (2002) MEG/EEG forward and inverse modeling using MRIVIEW. In Nowak H, Jaueisen J, Giebler F, Huonker R (eds) Proceedings of the 13th international conference on biomagnetism, pp 785–787

    Google Scholar 

  • Ranken DM, Stephen JM, George JS (2004) MUSIC seeded multi-dipole MEG modeling using the Constrained Start Spatio-Temporal modeling procedure. Neurol Clin Neurophysiol 2004:80

    Google Scholar 

  • Rovamo J, Virsu V (1979) An estimation and application of the human cortical magnification factor. Exp Brain Res 37:495–510

    Article  Google Scholar 

  • Schmidt DM, George JS, Wood CC (1999) Bayesian inference applied to the electromagnetic inverse problem. Hum Brain Mapp 7:195–212

    Article  Google Scholar 

  • Stephen JM, Aine CJ, Christner RF, Ranken D, Huang M, Best E (2002) Central versus peripheral visual field stimulation results in timing differences in dorsal stream sources as measured with MEG. Vision Res 42:3059–3074

    Article  Google Scholar 

  • Stephen JM, Aine CJ, Ranken D, Hudson D, Shih JJ (2003a) Multidipole analysis of simulated epileptic spikes withreal background activity. J Clin Neurophysiol 20:1–16

    Article  Google Scholar 

  • Stephen JM, Davis LE, Aine CJ, Ranken D, Herman M, Hudson D et al (2003b) Investigation of the normal proximal somatomotor system using magnetoencephalography. Clin Neurophysiol 114:1781–1792

    Article  Google Scholar 

  • Stephen JM, Ranken DM, Aine CJ, Weisend MP, Shih JJ (2005) Differentiability of simulated MEG hippocampal, medial temporal and neocortical temporal epileptic spike activity. J Clin Neurophysiol 22:388–401

    Google Scholar 

  • Stephen JM, Ranken D, Best E, Adair J, Knoefel J, Kovacevic S et al (2006) Aging changes and gender differences in response to median nerve stimulation measured with MEG. Clin Neurophysiol 117:131–143

    Article  Google Scholar 

  • Stephen JM, Kodituwakku PW, Kodituwakku EL, Romero L, Peters AM, Sharadamma NM, Caprihan A, Coffman BA (2012) Delays in auditory processing identified in preschool children with FASD. Alcohol Clin Exp Res 36(10):1720–1727

    Article  Google Scholar 

  • Supek S, Aine CJ (1993)  Simulation studies of multiple dipole neuromagnetic source localization: model order and limits of source resolution. IEEE Trans Biomed Eng 40:529–540

    Google Scholar 

  • Supek S, Aine C (1997) Spatio-temporal modeling of neuromagnetic data: I. Multisource location versus timecourse estimation accuracy. Hum Brain Mapp 5:139–153

    Article  Google Scholar 

  • Susac A, Ilmoniemi RJ, Pihko E, Ranken D, Supek S (2010) Early cortical responses are sensitive to changes in face stimuli. Brain Res 1346:155–164

    Article  Google Scholar 

  • Susac A, Ilmoniemi RJ, Ranken D, Supek S (2011) Face activated neurodynamic cortical networks. Med Biol Eng Compu 49:531–543

    Article  Google Scholar 

  • Uutela K, Hämäläinen M, Somersalo E (1999) Visualization of magnetoencephalographic data using minimum current estimates. NeuroImage 10:173–180

    Article  Google Scholar 

  • Vanni S, Dojat M, Warnking J, Delon-Martin C, Segebarth C, Bullier J (2004) Timing of interactions across the visual field in the human cortex. NeuroImage 21:818–828

    Article  Google Scholar 

  • Vrba J, Robinson SE (2000) Linearly constrained minimum variance beamformers, synthetic aperturemagnetometry, andMUSIC in MEG applications. IEEE conference record of the 34th Asilomar conference on signals, systems and computers, vol 1, pp 313–317

    Google Scholar 

  • Wagner M, Fuchs M, Kastner J (2004) Evaluation of sLORETA in the presence of noise and multiple sources. Brain Topogr 16:277–280

    Article  Google Scholar 

  • Wagner M, Fuchs M, Kastner J (2007) SWARM: sLORETAweighted accurate minimum-norm inverse solutions. Proceedings of the 15th international conference on biomagnetism. Vancouver, BC Canada, Elsevier ICS 1300

    Google Scholar 

  • Wagner M, Fuchs M, Kastner J (2008) sLORETA, eLORETA, and SWARM in the presence of noise and multiple sources. In Kakigi R, Yokosawa K, Kuriki S (eds) Biomagnetism: interdisciplinary research and exploration. Hokkaido University Press, Tokyo, pp. 74–76

    Google Scholar 

  • Wipf DP, Owen JP, Attias HT, Sekihara K, Nagarajan SS (2010) Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG. NeuroImage 49:641–655

    Article  Google Scholar 

  • Wischmann HA, Fuchs M, Wagner AD, Doessel O (1995) Current density imaging: A time series reconstruction implementing a “best fixed distributions” constraint. In: Baumgartner C, Deecke L, Stroink G, Williamson SJ (eds) Biomagnetism: Fundamental research and clinical applications. Ios Press, Amsterdam, pp 427–432

    Google Scholar 

Download references

Acknowledgment

This work was funded by NIH grantsR21MH080141-02, 1P20 RR021938-04, and R01AG029495-04. It was also supported in part by the Department of Energy under Award Number DE-FG02-99ER62764 to the Mind Research Network. We thank M. Weisend, S. Ahlfors, M. Hämäläinen, J. Mosher, A. Leuthold, and A. Georgopoulos for their help when the initial partnership between institutions was established which permitted the acquisition of these data. We also wish to thank J. A. MacArthur, T. Wallace, K. Gilliam, C. H. Donahue, R. Montaño, J. E. Bryant, and A. Scott who aided in the construction of the earlier datasets. The content of this study is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori Sanfratello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanfratello, L., Stephen, J., Best, E., Ranken, D., Aine, C. (2014). MEG-SIM Web Portal: A Database of Realistic Simulated and Empirical MEG Data for Testing Algorithms. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33045-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33045-2_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33044-5

  • Online ISBN: 978-3-642-33045-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics