Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 862))

  • 3912 Accesses

Abstract

It has been well known that there is an intriguing analogy between statistical mechanics of Ising spin glasses and information processing such as the associative memory, the image restoration, the pattern recognition, and etc. As a natural extension of the statistical mechanical model of information processing, one can consider a quantum mechanical model of information processing using transverse Ising models. ChapterĀ 9 discusses such an application of transverse Ising models to information processing. The first part focuses on the Hopfield model in a transverse field for the associative memory, where the extraction of embedded patterns using quantum fluctuations is discussed. The second part of this chapter is devoted to the investigation of image restorations and error correcting codes by Bayesian statistics with quantum fluctuations. It mentions the MPM estimate as well the MAP estimate which respectively correspond to the Bayesian estimation schemes by tuning the amount of quantum fluctuations and by quantum annealing. Appendix includes details of the Hopfield model in a transverse field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amara, P., Hsu, D., Straub, J.E.: Global energy minimum searches using an approximate solution of the imaginary time Schroedinger equation. J. Phys. Chem. 97(25), 6715ā€“6721 (1993). [8.1, 9.2]

    ArticleĀ  Google ScholarĀ 

  2. Amit, D.J., Gutfreund, H., Sompolinsky, H.: Storing infinite numbers of patterns in a spin-glass model of neural networks. Phys. Rev. Lett. 55, 1530ā€“1533 (1985). [9.1.1]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  3. Ash, R.B.: Information Theory. Dover, New York (1965). [9.2.2, 9.2.4]

    MATHĀ  Google ScholarĀ 

  4. Chakrabarti, B.K., Dasgupta, P.K.: Modelling neural networks. Phys. A, Stat. Mech. Appl. 186, 33ā€“48 (1992). [9.1.1]

    ArticleĀ  Google ScholarĀ 

  5. Chakrabarti, B.K., Dutta, A., Sen, P.: Quantum Ising Phases and Transitions in Transverse Ising Models. Springer, Berlin (1995). [9.2]

    Google ScholarĀ 

  6. Coolen, A.C.C., Ruijgrok, T.W.: Image evolution in Hopfield networks. Phys. Rev. A 38, 4253ā€“4255 (1988). [9.1.2]

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  7. Das, A., Chakrabarti, B.K.: Quantum Annealing and Related Optimization Methods. Lecture Notes in Physics, vol. 679. Springer, Berlin (2005). [1.3, 8.1, 9.2]

    BookĀ  MATHĀ  Google ScholarĀ 

  8. de Almeida, J.R.L., Thouless, D.J.: Stability of the Sherrington-Kirkpatrick solution of a spin glass model. J. Phys. A, Math. Gen. 11(5), 983 (1978). [9.1.1]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  9. Finnila, A., Gomez, M., Sebenik, C., Stenson, C., Doll, J.: Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219(5ā€“6), 343ā€“348 (1994). [8.1, 9.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  10. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6(6), 721ā€“741 (1984). [8.1, 8.7.2, 8.A.3, 9.2, 9.2.1]

    ArticleĀ  Google ScholarĀ 

  11. Goldschmidt, Y.Y.: Solvable model of the quantum spin glass in a transverse field. Phys. Rev. B 41, 4858ā€“4861 (1990). [1.3, 6.6, 8.5.3.2, 9.2]

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  12. Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79(8), 2554ā€“2558 (1982). [9.1]

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  13. Inoue, J.: Application of the quantum spin glass theory to image restoration. Phys. Rev. E 63, 046114 (2001). [1.3, 9.2, 9.2.4]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  14. Inoue, J.: Pattern-recalling processes in quantum Hopfield networks far from saturation. J.Ā Phys. Conf. Ser. 297(1), 012012 (2011). [1.1, 1.3, 9.1.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  15. Inoue, J., Tanaka, K.: Dynamics of the maximum marginal likelihood hyperparameter estimation in image restoration: gradient descent versus expectation and maximization algorithm. Phys. Rev. E 65, 016125 (2001). [9.2, 9.2.4]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  16. Inoue, J., Saika, Y., Okada, M.: Quantum mean-field decoding algorithm for error-correcting codes. J. Phys. Conf. Ser. 143(1), 012019 (2009). [9.2.5]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  17. Ishii, H., Yamamoto, T.: Effect of a transverse field on the spin glass freezing in the Sherrington-Kirkpatrick model. J. Phys. C, Solid State Phys. 18(33), 6225 (1985). [1.3, 6.2, 6.3, 9.2.5]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  18. Jordan, M.: Learning in Graphical Models. MIT Press, Cambridge (1998). [9.2.5]

    BookĀ  MATHĀ  Google ScholarĀ 

  19. Kabashima, Y., Saad, D.: Statistical mechanics of error-correcting codes. Europhys. Lett. 45(1), 97 (1999). [9.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  20. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355ā€“5363 (1998). [1.1, 1.3, 8.1, 8.4.1, 9.2, 9.2.6]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  21. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671ā€“680 (1983). [8.1, 9.2, 9.2.1]

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  22. Ma, Y.q., Gong, C.d.: Statics in the random quantum asymmetric Sherrington-Kirkpatrick model. Phys. Rev. B 45, 793ā€“796 (1992). [1.3, 9.1.1]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  23. Ma, Y.q., Gong, C.d.: Hopfield spin-glass model in a transverse field. Phys. Rev. B 48, 12778ā€“12782 (1993). [1.3,9.1.1]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  24. Ma, Y.q., Zhang, Y.m., Ma, Y.g., Gong, C.d.: Statistical mechanics of a Hopfield neural-network model in a transverse field. Phys. Rev. E 47, 3985ā€“3987 (1993). [1.3, 9.1.1]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  25. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003). [8.1, 9.2.1, 9.2.4]

    MATHĀ  Google ScholarĀ 

  26. Miyashita, S.: Dynamics of the magnetization with an inversion of the magnetic field. J.Ā Phys. Soc. Jpn. 64(9), 3207ā€“3214 (1995). [9.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  27. Miyashita, S.: Observation of the energy gap due to the quantum tunneling making use of the Landau-Zener mechanism. J. Phys. Soc. Jpn. 65(8), 2734ā€“2735 (1996). [9.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  28. Morita, S., Nishimori, H.: Mathematical foundation of quantum annealing. J. Math. Phys. 49(12), 125210 (2008). [8.8, 9.2.6]

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  29. Nakano, K.: Associatronā€”a model of associative memory. IEEE Trans. Syst. Man Cybern. 2(3), 380ā€“388 (1972). [9.1]

    ArticleĀ  Google ScholarĀ 

  30. Nishimori, H.: Optimum decoding temperature for error-correcting codes. J. Phys. Soc. Jpn. 62(9), 2973ā€“2975 (1993). [9.2, 9.2.1]

    ArticleĀ  Google ScholarĀ 

  31. Nishimori, H.: Statistical Physics of Spin Glasses and Information Processing: An Introduction. Oxford University Press, Oxford (2001). [1.3, 8.1, 9.2, 9.2.2]

    BookĀ  MATHĀ  Google ScholarĀ 

  32. Nishimori, H., Nonomura, Y.: Quantum effects in neural networks. J. Phys. Soc. Jpn. 65(12), 3780ā€“3796 (1996). [1.1, 1.3, 9.1.1, 9.A]

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  33. Nishimori, H., Wong, K.Y.M.: Statistical mechanics of image restoration and error-correcting codes. Phys. Rev. E 60, 132ā€“144 (1999). [9.2, 9.2.1, 9.2.4]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  34. Opper, M., Saad, D.: Advanced Mean Field Methods: Theory and Practice. MIT Press, Cambridge (2001). [9.2.5]

    MATHĀ  Google ScholarĀ 

  35. Penrose, R.: Shadows of the Mind. Oxford University Press, Oxford (1994). [9.1.1]

    Google ScholarĀ 

  36. Pryce, J.M., Bruce, A.D.: Statistical mechanics of image restoration. J. Phys. A, Math. Gen. 28(3), 511 (1995). [9.2]

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  37. RujĆ”n, P.: Finite temperature error-correcting codes. Phys. Rev. Lett. 70, 2968ā€“2971 (1993). [9.2, 9.2.1]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  38. Santoro, G.E., MartoÅˆĆ”k, R., Tosatti, E., Car, R.: Theory of quantum annealing of an Ising spin glass. Science 295(5564), 2427ā€“2430 (2002). [8.4.1, 9.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  39. Sherrington, D., Kirkpatrick, S.: Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792ā€“1796 (1975). [6.1, 9.1.1, 9.1.2, 9.2, 9.2.4, 9.2.5]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  40. Sourlas, N.: Spin-glass models as error-correcting codes. Nature 339, 693ā€“695 (1989). [9.2, 9.2.2, 9.2.4]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  41. Suzuki, M.: Relationship between d-dimensional quantal spin systems and (d+1)-dimensional Ising systems. Prog. Theor. Phys. 56(5), 1454ā€“1469 (1976). [1.1, 1.3, 3.1, 5.2, 8.7.2, 9.1.2, 9.2, 9.2.4, 9.2.5, 9.2.6]

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  42. Tanaka, K.: Statistical-mechanical approach to image processing. J. Phys. A, Math. Gen. 35(37), 81 (2002). [9.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  43. Tanaka, K., Horiguchi, T.: Quantum statistical-mechanical iterative method in image restoration. Electron. Commun. Jpn. 83(3), 84 (2000). [1.3, 9.2, 9.2.5]

    ArticleĀ  Google ScholarĀ 

  44. Trotter, H.F.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545ā€“551 (1959). [3.1, 9.2.4]

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  45. Vitiello, G.: Coherence and dissipative dynamics in the quantum brain model. Neural Netw. World 5, 717 (1995). [9.1.1]

    Google ScholarĀ 

  46. Winkler, G.: Image Analysis, Random Fields, and Markov Chain Monte Carlo Methods: AĀ Mathematical Introduction. Springer, Berlin (2002). [9.2]

    Google ScholarĀ 

  47. Yamamoto, T., Ishii, H.: A perturbation expansion for the Sherrington-Kirkpatrick model with a transverse field. J. Phys. C, Solid State Phys. 20(35), 6053 (1987). [1.3, 6.2, 6.3, 9.2.5]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  48. Zener, C.: Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. Ser. A 137, 696ā€“702 (1932). [7.A.2, 9.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Appendix 9.A: Derivation of Saddle Point Equations forĀ theĀ Quantum Hopfield Model

Appendix 9.A: Derivation of Saddle Point Equations forĀ theĀ Quantum Hopfield Model

In this appendix, according to Nishimori and Nonomura [298], we derive the saddle point equations (9.1.9)ā€“(9.1.15) for the Hopfield model at zero temperature. We starts our argument from the Suzuki-Trotter decomposition:

$$ Z = \lim_{M \to\infty} \operatorname{Tr} \bigl( \mathrm{e}^{-\beta H_{0}/M} \, \mathrm{e}^{-\beta H_{1}/M} \bigr)^{M}=\lim_{M \to\infty} Z_{M} $$
(9.A.1)

where we defined the two parts of the Hamiltonian as

$$ H_{0}= -\frac{1}{N} \sum_{ij} \sum_{\mu=1}^{P} \xi_{i}^{\mu} \xi_{j}^{\mu} S_{i}^{z}S_{j}^{z}, \qquad H_{1} = -\varGamma\sum_{i}S_{i}^{x}. $$
(9.A.2)

Z M is given by

(9.A.3)

with

$$ B = \frac{1}{2} \log\mathrm{cosec} \biggl( \frac{\beta\varGamma}{M} \biggr). $$
(9.A.4)

To average out the pattern-dependence in the self-averaging quantity such as free energy, we use the replica trick:

$$ {\ll}\log Z_{M} {\gg}= \lim_{n \to0} \frac{{\ll} Z_{M} {\gg}-1}{n}. $$
(9.A.5)

Then, we have

(9.A.6)

Here we assume that for the first s patterns, namely, for the so-called ā€˜condensed patternsā€™, the quantity \((\beta/M) \sum_{K\rho} \sum_{\mu=1}^{s} m_{K \mu\rho} \sum_{i}\xi_{i}^{\mu} S_{i\sigma K}\) is of order 1 object, whereas for the un-condensed patterns Ī¼=s,ā€¦,p, the quantity \((\beta/M) \sum_{K \rho} \sum_{\mu=s+1}^{P} \sum_{i}\xi_{i}^{\mu} S_{i\rho K}\) is of order \(1/\sqrt{N}\). Hence, we can rewrite (9.A.6) as

(9.A.7)

Collecting the quadratic part in (9.A.6), we obtain

$$ \prod_{\mu} \exp \biggl[ -\frac{N\beta}{2M^{2}} \sum _{K \rho} \sum_{L \sigma} m_{K \mu\rho}^{2} + \frac{\beta^{2}}{2M^{2}} \sum _{K\rho} \sum_{L \sigma} m_{K \mu\rho} m_{L \mu\sigma} \sum_{i} S_{i \rho K} S_{i\sigma L} \biggr] = \prod_{\mu}E_{\mu} $$
(9.A.8)

where we defined

$$ E_{\mu} = \exp \biggl[ -\frac{N \beta}{2M} \sum _{\mu K \rho} {\varLambda}_{K \rho,L\sigma} m_{K \mu\rho} m_{L \mu\sigma} \biggr] $$
(9.A.9)

with (MnƗMn)-matrix:

(9.A.10)

and

$$ q_{\rho\sigma}(KL) = \frac{1}{N} \sum_{i}S_{i \rho K} S_{i \sigma L}, \qquad \overline{S}_{q} (KL) = \frac{1}{N} \sum_{i} S_{i \rho K} S_{i \sigma L}. $$
(9.A.11)

Thus, we immediately obtain

(9.A.12)

where Ī» KĻ are the eigenvalues of the Ī› KĻ,LĻƒ . Inserting the definitions (9.A.11) by using the identities:

(9.A.13)
(9.A.14)

We write the factor of unity G{Ī» KĻ }=1 as

(9.A.15)

where we used the Fourier transform of the delta function. Multiplying the G{Ī» KĻ }=1 by ā‰ŖZ nā‰«, one obtains

(9.A.16)

where we used self-averaging properties in the limit of Nā†’āˆž and dropped the site i dependence. f denotes the free energy per spin, which is given by

(9.A.17)

where T is temperature T=Ī² āˆ’1. Extremum conditions for the free energy give the following saddle points:

(9.A.18)
(9.A.19)
(9.A.20)
(9.A.21)
(9.A.22)

where we should notice that m KĪ¼Ļ , q ĻƒĻ (KL) and r ĻĻƒ (KL) are overlap, spin glass order parameter and noise from un-condensed patterns, respectively. These are the same as in the classical Hopfield model. On the other hand, \(\overline{S}_{\rho}(KL)\) and t Ļ (KL) represent quantum effects. The former represents the degree of quantum fluctuation by the deviation from unity and the latter denotes the effect of un-correlated patterns in the same replica.

9.1.1 9.A.1 Replica Symmetric and Static Approximation

To proceed the calculations, we assume the replica symmetric and static approximations:

(9.A.23)
(9.A.24)
(9.A.25)
(9.A.26)
(9.A.27)

namely, we consider the case in which these order parameters are independent on the replica and Trotter indexes. Then, we have the free energy per replica as follows

(9.A.28)

By using the Hubbard-Stratonovich transformation, we obtain in the limit of nā†’0 as

(9.A.29)

We next consider the term (1/n)logĪ» KĻ in (9.A.28). The matrix elements {Ī› KĻ,LĻƒ } are āˆ’Ī²/M (Ļā‰ Ļƒ), \(-\beta\overline{S}/M\) (Ļ=Ļƒ, Kā‰ L) and 1āˆ’Ī²/M (Ļ=Ļƒ, K=L). Then, the eigenvalues are given by

(9.A.30)
(9.A.31)
(9.A.32)

Thus, one can evaluate

(9.A.33)

Collecting therms in (9.A.28), (9.A.29) and (9.A.33), we obtain

(9.A.34)

For simplicity, we now set m Ī¼ =Ī“ Ī¼,1 m,Ī¾ Ī¼ =Ī“ Ī¼,1, namely, we consider the case in which a single pattern is recalled. The extremum conditions gives the following saddle point equations.

(9.A.35)
(9.A.36)
(9.A.37)
(9.A.38)
(9.A.39)

where we defined

(9.A.40)
(9.A.41)

9.1.2 9.A.2 Zero Temperature Limit

At the ground state Tā†’0, we naturally expect that \(\overline{S}=q\). For convenience, we introduce the parameter C as

$$ C \equiv \lim_{\beta\to\infty} \beta(\overline{S}-q) = \varGamma^{2} \int \frac{Dz}{ [(m + \sqrt{\alpha r}\,z)^{2} + \varGamma^{2}]^{3/2}}. $$
(9.A.42)

Then, we can rewrite the saddle point equations in terms of C as

(9.A.43)
(9.A.44)
(9.A.45)

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suzuki, S., Inoue, Ji., Chakrabarti, B.K. (2013). Applications. In: Quantum Ising Phases and Transitions in Transverse Ising Models. Lecture Notes in Physics, vol 862. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33039-1_9

Download citation

Publish with us

Policies and ethics