Advertisement

Applications

  • Sei Suzuki
  • Jun-ichi Inoue
  • Bikas K. Chakrabarti
Part of the Lecture Notes in Physics book series (LNP, volume 862)

Abstract

It has been well known that there is an intriguing analogy between statistical mechanics of Ising spin glasses and information processing such as the associative memory, the image restoration, the pattern recognition, and etc. As a natural extension of the statistical mechanical model of information processing, one can consider a quantum mechanical model of information processing using transverse Ising models. Chapter 9 discusses such an application of transverse Ising models to information processing. The first part focuses on the Hopfield model in a transverse field for the associative memory, where the extraction of embedded patterns using quantum fluctuations is discussed. The second part of this chapter is devoted to the investigation of image restorations and error correcting codes by Bayesian statistics with quantum fluctuations. It mentions the MPM estimate as well the MAP estimate which respectively correspond to the Bayesian estimation schemes by tuning the amount of quantum fluctuations and by quantum annealing. Appendix includes details of the Hopfield model in a transverse field.

Keywords

Spin Glass Image Restoration Parity Check Free Energy Density Quantum Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 11.
    Amara, P., Hsu, D., Straub, J.E.: Global energy minimum searches using an approximate solution of the imaginary time Schroedinger equation. J. Phys. Chem. 97(25), 6715–6721 (1993). [8.1, 9.2] CrossRefGoogle Scholar
  2. 13.
    Amit, D.J., Gutfreund, H., Sompolinsky, H.: Storing infinite numbers of patterns in a spin-glass model of neural networks. Phys. Rev. Lett. 55, 1530–1533 (1985). [9.1.1] ADSCrossRefGoogle Scholar
  3. 19.
    Ash, R.B.: Information Theory. Dover, New York (1965). [9.2.2, 9.2.4] zbMATHGoogle Scholar
  4. 64.
    Chakrabarti, B.K., Dasgupta, P.K.: Modelling neural networks. Phys. A, Stat. Mech. Appl. 186, 33–48 (1992). [9.1.1] CrossRefGoogle Scholar
  5. 65.
    Chakrabarti, B.K., Dutta, A., Sen, P.: Quantum Ising Phases and Transitions in Transverse Ising Models. Springer, Berlin (1995). [9.2] Google Scholar
  6. 87.
    Coolen, A.C.C., Ruijgrok, T.W.: Image evolution in Hopfield networks. Phys. Rev. A 38, 4253–4255 (1988). [9.1.2] MathSciNetADSCrossRefGoogle Scholar
  7. 93.
    Das, A., Chakrabarti, B.K.: Quantum Annealing and Related Optimization Methods. Lecture Notes in Physics, vol. 679. Springer, Berlin (2005). [1.3, 8.1, 9.2] zbMATHCrossRefGoogle Scholar
  8. 97.
    de Almeida, J.R.L., Thouless, D.J.: Stability of the Sherrington-Kirkpatrick solution of a spin glass model. J. Phys. A, Math. Gen. 11(5), 983 (1978). [9.1.1] ADSCrossRefGoogle Scholar
  9. 135.
    Finnila, A., Gomez, M., Sebenik, C., Stenson, C., Doll, J.: Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219(5–6), 343–348 (1994). [8.1, 9.2] ADSCrossRefGoogle Scholar
  10. 155.
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6(6), 721–741 (1984). [8.1, 8.7.2, 8.A.3, 9.2, 9.2.1] CrossRefGoogle Scholar
  11. 158.
    Goldschmidt, Y.Y.: Solvable model of the quantum spin glass in a transverse field. Phys. Rev. B 41, 4858–4861 (1990). [1.3, 6.6, 8.5.3.2, 9.2] MathSciNetADSCrossRefGoogle Scholar
  12. 178.
    Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79(8), 2554–2558 (1982). [9.1] MathSciNetADSCrossRefGoogle Scholar
  13. 190.
    Inoue, J.: Application of the quantum spin glass theory to image restoration. Phys. Rev. E 63, 046114 (2001). [1.3, 9.2, 9.2.4] ADSCrossRefGoogle Scholar
  14. 192.
    Inoue, J.: Pattern-recalling processes in quantum Hopfield networks far from saturation. J. Phys. Conf. Ser. 297(1), 012012 (2011). [1.1, 1.3, 9.1.2] ADSCrossRefGoogle Scholar
  15. 193.
    Inoue, J., Tanaka, K.: Dynamics of the maximum marginal likelihood hyperparameter estimation in image restoration: gradient descent versus expectation and maximization algorithm. Phys. Rev. E 65, 016125 (2001). [9.2, 9.2.4] ADSCrossRefGoogle Scholar
  16. 194.
    Inoue, J., Saika, Y., Okada, M.: Quantum mean-field decoding algorithm for error-correcting codes. J. Phys. Conf. Ser. 143(1), 012019 (2009). [9.2.5] ADSCrossRefGoogle Scholar
  17. 195.
    Ishii, H., Yamamoto, T.: Effect of a transverse field on the spin glass freezing in the Sherrington-Kirkpatrick model. J. Phys. C, Solid State Phys. 18(33), 6225 (1985). [1.3, 6.2, 6.3, 9.2.5] ADSCrossRefGoogle Scholar
  18. 203.
    Jordan, M.: Learning in Graphical Models. MIT Press, Cambridge (1998). [9.2.5] zbMATHCrossRefGoogle Scholar
  19. 210.
    Kabashima, Y., Saad, D.: Statistical mechanics of error-correcting codes. Europhys. Lett. 45(1), 97 (1999). [9.2] ADSCrossRefGoogle Scholar
  20. 211.
    Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355–5363 (1998). [1.1, 1.3, 8.1, 8.4.1, 9.2, 9.2.6] ADSCrossRefGoogle Scholar
  21. 228.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983). [8.1, 9.2, 9.2.1] MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 250.
    Ma, Y.q., Gong, C.d.: Statics in the random quantum asymmetric Sherrington-Kirkpatrick model. Phys. Rev. B 45, 793–796 (1992). [1.3, 9.1.1] ADSCrossRefGoogle Scholar
  23. 251.
    Ma, Y.q., Gong, C.d.: Hopfield spin-glass model in a transverse field. Phys. Rev. B 48, 12778–12782 (1993). [1.3,9.1.1] ADSCrossRefGoogle Scholar
  24. 253.
    Ma, Y.q., Zhang, Y.m., Ma, Y.g., Gong, C.d.: Statistical mechanics of a Hopfield neural-network model in a transverse field. Phys. Rev. E 47, 3985–3987 (1993). [1.3, 9.1.1] ADSCrossRefGoogle Scholar
  25. 254.
    MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003). [8.1, 9.2.1, 9.2.4] zbMATHGoogle Scholar
  26. 276.
    Miyashita, S.: Dynamics of the magnetization with an inversion of the magnetic field. J. Phys. Soc. Jpn. 64(9), 3207–3214 (1995). [9.2] ADSCrossRefGoogle Scholar
  27. 277.
    Miyashita, S.: Observation of the energy gap due to the quantum tunneling making use of the Landau-Zener mechanism. J. Phys. Soc. Jpn. 65(8), 2734–2735 (1996). [9.2] ADSCrossRefGoogle Scholar
  28. 282.
    Morita, S., Nishimori, H.: Mathematical foundation of quantum annealing. J. Math. Phys. 49(12), 125210 (2008). [8.8, 9.2.6] MathSciNetCrossRefGoogle Scholar
  29. 293.
    Nakano, K.: Associatron—a model of associative memory. IEEE Trans. Syst. Man Cybern. 2(3), 380–388 (1972). [9.1] CrossRefGoogle Scholar
  30. 296.
    Nishimori, H.: Optimum decoding temperature for error-correcting codes. J. Phys. Soc. Jpn. 62(9), 2973–2975 (1993). [9.2, 9.2.1] CrossRefGoogle Scholar
  31. 297.
    Nishimori, H.: Statistical Physics of Spin Glasses and Information Processing: An Introduction. Oxford University Press, Oxford (2001). [1.3, 8.1, 9.2, 9.2.2] zbMATHCrossRefGoogle Scholar
  32. 298.
    Nishimori, H., Nonomura, Y.: Quantum effects in neural networks. J. Phys. Soc. Jpn. 65(12), 3780–3796 (1996). [1.1, 1.3, 9.1.1, 9.A] MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. 299.
    Nishimori, H., Wong, K.Y.M.: Statistical mechanics of image restoration and error-correcting codes. Phys. Rev. E 60, 132–144 (1999). [9.2, 9.2.1, 9.2.4] ADSCrossRefGoogle Scholar
  34. 302.
    Opper, M., Saad, D.: Advanced Mean Field Methods: Theory and Practice. MIT Press, Cambridge (2001). [9.2.5] zbMATHGoogle Scholar
  35. 307.
    Penrose, R.: Shadows of the Mind. Oxford University Press, Oxford (1994). [9.1.1] Google Scholar
  36. 320.
    Pryce, J.M., Bruce, A.D.: Statistical mechanics of image restoration. J. Phys. A, Math. Gen. 28(3), 511 (1995). [9.2] MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 337.
    Ruján, P.: Finite temperature error-correcting codes. Phys. Rev. Lett. 70, 2968–2971 (1993). [9.2, 9.2.1] ADSCrossRefGoogle Scholar
  38. 342.
    Santoro, G.E., Martoňák, R., Tosatti, E., Car, R.: Theory of quantum annealing of an Ising spin glass. Science 295(5564), 2427–2430 (2002). [8.4.1, 9.2] ADSCrossRefGoogle Scholar
  39. 369.
    Sherrington, D., Kirkpatrick, S.: Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792–1796 (1975). [6.1, 9.1.1, 9.1.2, 9.2, 9.2.4, 9.2.5] ADSCrossRefGoogle Scholar
  40. 374.
    Sourlas, N.: Spin-glass models as error-correcting codes. Nature 339, 693–695 (1989). [9.2, 9.2.2, 9.2.4] ADSCrossRefGoogle Scholar
  41. 386.
    Suzuki, M.: Relationship between d-dimensional quantal spin systems and (d+1)-dimensional Ising systems. Prog. Theor. Phys. 56(5), 1454–1469 (1976). [1.1, 1.3, 3.1, 5.2, 8.7.2, 9.1.2, 9.2, 9.2.4, 9.2.5, 9.2.6] ADSzbMATHCrossRefGoogle Scholar
  42. 396.
    Tanaka, K.: Statistical-mechanical approach to image processing. J. Phys. A, Math. Gen. 35(37), 81 (2002). [9.2] ADSCrossRefGoogle Scholar
  43. 397.
    Tanaka, K., Horiguchi, T.: Quantum statistical-mechanical iterative method in image restoration. Electron. Commun. Jpn. 83(3), 84 (2000). [1.3, 9.2, 9.2.5] CrossRefGoogle Scholar
  44. 403.
    Trotter, H.F.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545–551 (1959). [3.1, 9.2.4] MathSciNetzbMATHCrossRefGoogle Scholar
  45. 414.
    Vitiello, G.: Coherence and dissipative dynamics in the quantum brain model. Neural Netw. World 5, 717 (1995). [9.1.1] Google Scholar
  46. 422.
    Winkler, G.: Image Analysis, Random Fields, and Markov Chain Monte Carlo Methods: A Mathematical Introduction. Springer, Berlin (2002). [9.2] Google Scholar
  47. 433.
    Yamamoto, T., Ishii, H.: A perturbation expansion for the Sherrington-Kirkpatrick model with a transverse field. J. Phys. C, Solid State Phys. 20(35), 6053 (1987). [1.3, 6.2, 6.3, 9.2.5] ADSCrossRefGoogle Scholar
  48. 443.
    Zener, C.: Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. Ser. A 137, 696–702 (1932). [7.A.2, 9.2] ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sei Suzuki
    • 1
  • Jun-ichi Inoue
    • 2
  • Bikas K. Chakrabarti
    • 3
  1. 1.Dept. of Physics and MathematicsAoyama Gakuin UniversitySagamiharaJapan
  2. 2.Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
  3. 3.Saha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations