Advertisement

Dynamics of Quantum Ising Systems

  • Sei Suzuki
  • Jun-ichi Inoue
  • Bikas K. Chakrabarti
Part of the Lecture Notes in Physics book series (LNP, volume 862)

Abstract

The dynamics of quantum many-body systems have been the most important topic of the condensed matter and statistical physics in this century. Transverse Ising models have played a significant role in the study of the dynamics of quantum many-body systems. Chapter 7 exclusively discusses the dynamics of transverse Ising models. The first part mentions dynamical properties of transverse Ising models without explicit time dependence, where the tunneling dynamics of classical spin states are discussed. The second part, on the other hand, focuses on the dynamics of transverse Ising models with a time-dependent field. Theories of sudden as well as slow quantum quenches and quantum hysteresis are presented here. Also, the response to a pulsed transverse field is discussed. Appendices of this chapter include details on the mean field equation of motion, the Landau-Zener problem, and the microscopic equation of motion in the presence of an oscillatory field.

Keywords

Transverse Magnetisation Heat Bath Quantum Critical Point Transverse Field Longitudinal Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 2.
    Acharyya, M., Chakrabarti, B.K.: Ising system in oscillating field: hysteretic response. In: Stauffer, D. (ed.) Annual Reviews of Computational Physics, vol. 1, p. 107. World Scientific, Singapore (1994). [7.2.3] Google Scholar
  2. 3.
    Acharyya, M., Chakrabarti, B.K.: Response of Ising systems to oscillating and pulsed fields: hysteresis, ac, and pulse susceptibility. Phys. Rev. B 52, 6550–6568 (1995). [1.1, 1.3, 7.2.3] ADSCrossRefGoogle Scholar
  3. 4.
    Acharyya, M., Chakrabarti, B.K., Stinchcombe, R.B.: Hysteresis in Ising model in transverse field. J. Phys. A, Math. Gen. 27(5), 1533 (1994). [1.1, 1.3, 7.2.3] ADSCrossRefGoogle Scholar
  4. 21.
    Banerjee, V., Dattagupta, S.: Model calculation for the susceptibility of a quantum spin glass. Phys. Rev. B 50, 9942–9947 (1994). [7.1.3] ADSCrossRefGoogle Scholar
  5. 22.
    Banerjee, V., Dattagupta, S., Sen, P.: Hysteresis in a quantum spin model. Phys. Rev. E 52, 1436–1446 (1995). [1.1, 1.3, 7.2.3] ADSCrossRefGoogle Scholar
  6. 28.
    Barouch, E., McCoy, B.M., Dresden, M.: Statistical mechanics of the XY model. i. Phys. Rev. A 2, 1075–1092 (1970). [1.1, 1.3, 7.2.2, 7.2.2.1] ADSCrossRefGoogle Scholar
  7. 38.
    Bhattacharyya, S., Das, A., Dasgupta, S.: Transverse Ising chain under periodic instantaneous quenches: dynamical many-body freezing and emergence of slow solitary oscillations. Phys. Rev. B 86(5), 054410 (2012). doi: 10.1103/PhysRevB.86.054410. [1.1, 1.3, 7.2.3.1] ADSCrossRefGoogle Scholar
  8. 48.
    Brout, R., Müller, K., Thomas, H.: Tunnelling and collective excitations in a microscopic model of ferroelectricity. Solid State Commun. 4(10), 507–510 (1966). [1.1, 1.2, 4.5, 6.7.2, 7.1.1] ADSCrossRefGoogle Scholar
  9. 55.
    Calabrese, P., Cardy, J.: Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. Theory Exp. 2005(04), P04010 (2005). [7.2.2.1] MathSciNetCrossRefGoogle Scholar
  10. 56.
    Calabrese, P., Cardy, J.: Time dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96, 136801 (2006). [1.1, 7.2.2.1] ADSCrossRefGoogle Scholar
  11. 57.
    Calabrese, P., Cardy, J.: Quantum quenches in extended systems. J. Stat. Mech. Theory Exp. 2007(06), P06008 (2007). [7.2.2.1] MathSciNetCrossRefGoogle Scholar
  12. 63.
    Chakrabarti, B.K., Acharyya, M.: Dynamic transitions and hysteresis. Rev. Mod. Phys. 71, 847–859 (1999). [7.2.3.1] ADSCrossRefGoogle Scholar
  13. 69.
    Chandra, A.K., Das, A., Chakrabarti, B.K.: Quantum Quenching, Annealing and Computation. Lecture Notes in Physics, vol. 802. Springer, Berlin (2010). [7.2.2, 8.1] zbMATHCrossRefGoogle Scholar
  14. 78.
    Cincio, L., Dziarmaga, J., Rams, M.M., Zurek, W.H.: Entropy of entanglement and correlations induced by a quench: dynamics of a quantum phase transition in the quantum Ising model. Phys. Rev. A 75, 052321 (2007). [7.2.2] ADSCrossRefGoogle Scholar
  15. 91.
    Damski, B., Zurek, W.H.: Adiabatic-impulse approximation for avoided level crossings: from phase-transition dynamics to Landau-Zener evolutions and back again. Phys. Rev. A 73, 063405 (2006). [7.2.2, 7.A.2] ADSCrossRefGoogle Scholar
  16. 92.
    Das, A.: Exotic freezing of response in a quantum many-body system. Phys. Rev. B 82, 172402 (2010). [1.1, 1.3, 7.2.3.1] ADSCrossRefGoogle Scholar
  17. 118.
    Dziarmaga, J.: Dynamics of a quantum phase transition: exact solution of the quantum Ising model. Phys. Rev. Lett. 95, 245701 (2005). [1.1, 1.3, 7.2.2] ADSCrossRefGoogle Scholar
  18. 120.
    Dziarmaga, J.: Dynamics of a quantum phase transition and relaxation to a steady state. Adv. Phys. 59(6), 1063–1189 (2010). [7.2.2] ADSCrossRefGoogle Scholar
  19. 156.
    Glauber, R.J.: Time-dependent statistics of the Ising model. J. Math. Phys. 4(2), 294–307 (1963). [7.1.3, 8.6] MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 160.
    Greiner, M., Mandel, O., Esslinger, T., Hänsch, T.W., Bloch, I.: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002). [7.2.2, 7.2.2.2] ADSCrossRefGoogle Scholar
  21. 172.
    Heims, S.P.: Master equation for Ising model. Phys. Rev. 138, A587–A590 (1965). [7.1.3] MathSciNetADSCrossRefGoogle Scholar
  22. 219.
    Kawasaki, K.: Diffusion constants near the critical point for time-dependent Ising models. i. Phys. Rev. 145, 224–230 (1966). [7.1.3] MathSciNetADSCrossRefGoogle Scholar
  23. 220.
    Kawasaki, K.: Diffusion constants near the critical point for time-dependent Ising models. ii. Phys. Rev. 148, 375–381 (1966). [7.1.3] MathSciNetADSCrossRefGoogle Scholar
  24. 221.
    Kawasaki, K.: Diffusion constants near the critical point for time-dependent Ising models. iii. Self-diffusion constant. Phys. Rev. 150, 285–290 (1966). [7.1.3] MathSciNetADSCrossRefGoogle Scholar
  25. 223.
    Kibble, T.W.B.: Some implications of a cosmological phase transition. Phys. Rep. 67(1), 183–199 (1980). [7.2.2.2] MathSciNetADSCrossRefGoogle Scholar
  26. 227.
    Kinoshita, T., Wenger, T., Weiss, D.S.: A quantum Newton’s cradle. Nature 440, 900–903 (2006). [7.2.2] ADSCrossRefGoogle Scholar
  27. 234.
    Kopeć, T.K., Tadić, B., Pirc, R., Blinc, R.: Random fields and quantum effects in proton glasses. Z. Phys. B, Condens. Matter 78, 493–499 (1990). [7.1.3] ADSCrossRefGoogle Scholar
  28. 239.
    Lage, E.J.S., Stinchcombe, R.B.: Transverse Ising model with substitutional disorder: an effective-medium theory. J. Phys. C, Solid State Phys. 9(17), 3295 (1976). [7.1.2] ADSCrossRefGoogle Scholar
  29. 242.
    Landau, L.D.: On the theory of transfer of energy at collisions ii. Phys. Z. Sowjetunion 2, 46 (1932). [7.A.2] Google Scholar
  30. 243.
    Landau, L.D., Lifshitz, E.M.: Quantum Mechanics (Non-relativistic Theory). Butterworth-Heineman, Oxford (1958). [7.A.2] Google Scholar
  31. 318.
    Polkovnikov, A.: Universal adiabatic dynamics in the vicinity of a quantum critical point. Phys. Rev. B 72, 161201 (2005). [1.3, 7.2.2.2, 8.6] ADSCrossRefGoogle Scholar
  32. 319.
    Polkovnikov, A., Sengupta, K., Silva, A., Vengalattore, M.: Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011). [7.2.2] ADSCrossRefGoogle Scholar
  33. 334.
    Rossini, D., Silva, A., Mussardo, G., Santoro, G.E.: Effective thermal dynamics following a quantum quench in a spin chain. Phys. Rev. Lett. 102, 127204 (2009). [1.1, 1.3, 7.2.2.1] ADSCrossRefGoogle Scholar
  34. 335.
    Rossini, D., Suzuki, S., Mussardo, G., Santoro, G.E., Silva, A.: Long time dynamics following a quench in an integrable quantum spin chain: local versus nonlocal operators and effective thermal behavior. Phys. Rev. B 82, 144302 (2010). [1.1, 1.3, 7.2.2.1] ADSCrossRefGoogle Scholar
  35. 365.
    Sengupta, K., Powell, S., Sachdev, S.: Quench dynamics across quantum critical points. Phys. Rev. A 69, 053616 (2004). [1.1, 1.3, 7.2.2.1] ADSCrossRefGoogle Scholar
  36. 388.
    Suzuki, S.: In: Das, A., Chakrabarti, B.K. (eds.) Quantum Annealing and Related Optimization Method, p. 207. Springer, Berlin (2005). [7.A.2] CrossRefGoogle Scholar
  37. 413.
    Vitanov, N.V., Garraway, B.M.: Landau-Zener model: effects of finite coupling duration. Phys. Rev. A 53, 4288–4304 (1996). [7.A.2] ADSCrossRefGoogle Scholar
  38. 427.
    Wu, W., Ellman, B., Rosenbaum, T.F., Aeppli, G., Reich, D.H.: From classical to quantum glass. Phys. Rev. Lett. 67, 2076–2079 (1991). [1.1, 1.3, 6.2.1, 7.1.3] ADSCrossRefGoogle Scholar
  39. 443.
    Zener, C.: Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. Ser. A 137, 696–702 (1932). [7.A.2, 9.2] ADSCrossRefGoogle Scholar
  40. 444.
    Zurek, W.H.: Cosmological experiments in superfluid helium? Nature 317, 505 (1985). [7.2.2.2] ADSCrossRefGoogle Scholar
  41. 445.
    Zurek, W.H., Dorner, U., Zoller, P.: Dynamics of a quantum phase transition. Phys. Rev. Lett. 95, 105701 (2005). [1.1, 1.3, 7.2.2] ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sei Suzuki
    • 1
  • Jun-ichi Inoue
    • 2
  • Bikas K. Chakrabarti
    • 3
  1. 1.Dept. of Physics and MathematicsAoyama Gakuin UniversitySagamiharaJapan
  2. 2.Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
  3. 3.Saha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations