# Dynamics of Quantum Ising Systems

## Abstract

The dynamics of quantum many-body systems have been the most important topic of the condensed matter and statistical physics in this century. Transverse Ising models have played a significant role in the study of the dynamics of quantum many-body systems. Chapter 7 exclusively discusses the dynamics of transverse Ising models. The first part mentions dynamical properties of transverse Ising models without explicit time dependence, where the tunneling dynamics of classical spin states are discussed. The second part, on the other hand, focuses on the dynamics of transverse Ising models with a time-dependent field. Theories of sudden as well as slow quantum quenches and quantum hysteresis are presented here. Also, the response to a pulsed transverse field is discussed. Appendices of this chapter include details on the mean field equation of motion, the Landau-Zener problem, and the microscopic equation of motion in the presence of an oscillatory field.

## Keywords

Transverse Magnetisation Heat Bath Quantum Critical Point Transverse Field Longitudinal Field## References

- 2.Acharyya, M., Chakrabarti, B.K.: Ising system in oscillating field: hysteretic response. In: Stauffer, D. (ed.) Annual Reviews of Computational Physics, vol. 1, p. 107. World Scientific, Singapore (1994). [7.2.3] Google Scholar
- 3.Acharyya, M., Chakrabarti, B.K.: Response of Ising systems to oscillating and pulsed fields: hysteresis, ac, and pulse susceptibility. Phys. Rev. B
**52**, 6550–6568 (1995). [1.1, 1.3, 7.2.3] ADSCrossRefGoogle Scholar - 4.Acharyya, M., Chakrabarti, B.K., Stinchcombe, R.B.: Hysteresis in Ising model in transverse field. J. Phys. A, Math. Gen.
**27**(5), 1533 (1994). [1.1, 1.3, 7.2.3] ADSCrossRefGoogle Scholar - 21.Banerjee, V., Dattagupta, S.: Model calculation for the susceptibility of a quantum spin glass. Phys. Rev. B
**50**, 9942–9947 (1994). [7.1.3] ADSCrossRefGoogle Scholar - 22.Banerjee, V., Dattagupta, S., Sen, P.: Hysteresis in a quantum spin model. Phys. Rev. E
**52**, 1436–1446 (1995). [1.1, 1.3, 7.2.3] ADSCrossRefGoogle Scholar - 28.Barouch, E., McCoy, B.M., Dresden, M.: Statistical mechanics of the XY model. i. Phys. Rev. A
**2**, 1075–1092 (1970). [1.1, 1.3, 7.2.2, 7.2.2.1] ADSCrossRefGoogle Scholar - 38.Bhattacharyya, S., Das, A., Dasgupta, S.: Transverse Ising chain under periodic instantaneous quenches: dynamical many-body freezing and emergence of slow solitary oscillations. Phys. Rev. B
**86**(5), 054410 (2012). doi: 10.1103/PhysRevB.86.054410. [1.1, 1.3, 7.2.3.1] ADSCrossRefGoogle Scholar - 48.Brout, R., Müller, K., Thomas, H.: Tunnelling and collective excitations in a microscopic model of ferroelectricity. Solid State Commun.
**4**(10), 507–510 (1966). [1.1, 1.2, 4.5, 6.7.2, 7.1.1] ADSCrossRefGoogle Scholar - 55.Calabrese, P., Cardy, J.: Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. Theory Exp.
**2005**(04), P04010 (2005). [7.2.2.1] MathSciNetCrossRefGoogle Scholar - 56.Calabrese, P., Cardy, J.: Time dependence of correlation functions following a quantum quench. Phys. Rev. Lett.
**96**, 136801 (2006). [1.1, 7.2.2.1] ADSCrossRefGoogle Scholar - 57.Calabrese, P., Cardy, J.: Quantum quenches in extended systems. J. Stat. Mech. Theory Exp.
**2007**(06), P06008 (2007). [7.2.2.1] MathSciNetCrossRefGoogle Scholar - 63.Chakrabarti, B.K., Acharyya, M.: Dynamic transitions and hysteresis. Rev. Mod. Phys.
**71**, 847–859 (1999). [7.2.3.1] ADSCrossRefGoogle Scholar - 69.Chandra, A.K., Das, A., Chakrabarti, B.K.: Quantum Quenching, Annealing and Computation. Lecture Notes in Physics, vol. 802. Springer, Berlin (2010). [7.2.2, 8.1] zbMATHCrossRefGoogle Scholar
- 78.Cincio, L., Dziarmaga, J., Rams, M.M., Zurek, W.H.: Entropy of entanglement and correlations induced by a quench: dynamics of a quantum phase transition in the quantum Ising model. Phys. Rev. A
**75**, 052321 (2007). [7.2.2] ADSCrossRefGoogle Scholar - 91.Damski, B., Zurek, W.H.: Adiabatic-impulse approximation for avoided level crossings: from phase-transition dynamics to Landau-Zener evolutions and back again. Phys. Rev. A
**73**, 063405 (2006). [7.2.2, 7.A.2] ADSCrossRefGoogle Scholar - 92.Das, A.: Exotic freezing of response in a quantum many-body system. Phys. Rev. B
**82**, 172402 (2010). [1.1, 1.3, 7.2.3.1] ADSCrossRefGoogle Scholar - 118.Dziarmaga, J.: Dynamics of a quantum phase transition: exact solution of the quantum Ising model. Phys. Rev. Lett.
**95**, 245701 (2005). [1.1, 1.3, 7.2.2] ADSCrossRefGoogle Scholar - 120.Dziarmaga, J.: Dynamics of a quantum phase transition and relaxation to a steady state. Adv. Phys.
**59**(6), 1063–1189 (2010). [7.2.2] ADSCrossRefGoogle Scholar - 156.Glauber, R.J.: Time-dependent statistics of the Ising model. J. Math. Phys.
**4**(2), 294–307 (1963). [7.1.3, 8.6] MathSciNetADSzbMATHCrossRefGoogle Scholar - 160.Greiner, M., Mandel, O., Esslinger, T., Hänsch, T.W., Bloch, I.: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature
**415**, 39–44 (2002). [7.2.2, 7.2.2.2] ADSCrossRefGoogle Scholar - 172.Heims, S.P.: Master equation for Ising model. Phys. Rev.
**138**, A587–A590 (1965). [7.1.3] MathSciNetADSCrossRefGoogle Scholar - 219.Kawasaki, K.: Diffusion constants near the critical point for time-dependent Ising models. i. Phys. Rev.
**145**, 224–230 (1966). [7.1.3] MathSciNetADSCrossRefGoogle Scholar - 220.Kawasaki, K.: Diffusion constants near the critical point for time-dependent Ising models. ii. Phys. Rev.
**148**, 375–381 (1966). [7.1.3] MathSciNetADSCrossRefGoogle Scholar - 221.Kawasaki, K.: Diffusion constants near the critical point for time-dependent Ising models. iii. Self-diffusion constant. Phys. Rev.
**150**, 285–290 (1966). [7.1.3] MathSciNetADSCrossRefGoogle Scholar - 223.Kibble, T.W.B.: Some implications of a cosmological phase transition. Phys. Rep.
**67**(1), 183–199 (1980). [7.2.2.2] MathSciNetADSCrossRefGoogle Scholar - 227.Kinoshita, T., Wenger, T., Weiss, D.S.: A quantum Newton’s cradle. Nature
**440**, 900–903 (2006). [7.2.2] ADSCrossRefGoogle Scholar - 234.Kopeć, T.K., Tadić, B., Pirc, R., Blinc, R.: Random fields and quantum effects in proton glasses. Z. Phys. B, Condens. Matter
**78**, 493–499 (1990). [7.1.3] ADSCrossRefGoogle Scholar - 239.Lage, E.J.S., Stinchcombe, R.B.: Transverse Ising model with substitutional disorder: an effective-medium theory. J. Phys. C, Solid State Phys.
**9**(17), 3295 (1976). [7.1.2] ADSCrossRefGoogle Scholar - 242.Landau, L.D.: On the theory of transfer of energy at collisions ii. Phys. Z. Sowjetunion
**2**, 46 (1932). [7.A.2] Google Scholar - 243.Landau, L.D., Lifshitz, E.M.: Quantum Mechanics (Non-relativistic Theory). Butterworth-Heineman, Oxford (1958). [7.A.2] Google Scholar
- 318.Polkovnikov, A.: Universal adiabatic dynamics in the vicinity of a quantum critical point. Phys. Rev. B
**72**, 161201 (2005). [1.3, 7.2.2.2, 8.6] ADSCrossRefGoogle Scholar - 319.Polkovnikov, A., Sengupta, K., Silva, A., Vengalattore, M.: Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys.
**83**, 863–883 (2011). [7.2.2] ADSCrossRefGoogle Scholar - 334.Rossini, D., Silva, A., Mussardo, G., Santoro, G.E.: Effective thermal dynamics following a quantum quench in a spin chain. Phys. Rev. Lett.
**102**, 127204 (2009). [1.1, 1.3, 7.2.2.1] ADSCrossRefGoogle Scholar - 335.Rossini, D., Suzuki, S., Mussardo, G., Santoro, G.E., Silva, A.: Long time dynamics following a quench in an integrable quantum spin chain: local versus nonlocal operators and effective thermal behavior. Phys. Rev. B
**82**, 144302 (2010). [1.1, 1.3, 7.2.2.1] ADSCrossRefGoogle Scholar - 365.Sengupta, K., Powell, S., Sachdev, S.: Quench dynamics across quantum critical points. Phys. Rev. A
**69**, 053616 (2004). [1.1, 1.3, 7.2.2.1] ADSCrossRefGoogle Scholar - 388.Suzuki, S.: In: Das, A., Chakrabarti, B.K. (eds.) Quantum Annealing and Related Optimization Method, p. 207. Springer, Berlin (2005). [7.A.2] CrossRefGoogle Scholar
- 413.Vitanov, N.V., Garraway, B.M.: Landau-Zener model: effects of finite coupling duration. Phys. Rev. A
**53**, 4288–4304 (1996). [7.A.2] ADSCrossRefGoogle Scholar - 427.Wu, W., Ellman, B., Rosenbaum, T.F., Aeppli, G., Reich, D.H.: From classical to quantum glass. Phys. Rev. Lett.
**67**, 2076–2079 (1991). [1.1, 1.3, 6.2.1, 7.1.3] ADSCrossRefGoogle Scholar - 443.Zener, C.: Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. Ser. A
**137**, 696–702 (1932). [7.A.2, 9.2] ADSCrossRefGoogle Scholar - 444.Zurek, W.H.: Cosmological experiments in superfluid helium? Nature
**317**, 505 (1985). [7.2.2.2] ADSCrossRefGoogle Scholar - 445.Zurek, W.H., Dorner, U., Zoller, P.: Dynamics of a quantum phase transition. Phys. Rev. Lett.
**95**, 105701 (2005). [1.1, 1.3, 7.2.2] ADSCrossRefGoogle Scholar