Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 862))

  • 3984 Accesses

Abstract

The dynamics of quantum many-body systems have been the most important topic of the condensed matter and statistical physics in this century. Transverse Ising models have played a significant role in the study of the dynamics of quantum many-body systems. ChapterĀ 7 exclusively discusses the dynamics of transverse Ising models. The first part mentions dynamical properties of transverse Ising models without explicit time dependence, where the tunneling dynamics of classical spin states are discussed. The second part, on the other hand, focuses on the dynamics of transverse Ising models with a time-dependent field. Theories of sudden as well as slow quantum quenches and quantum hysteresis are presented here. Also, the response to a pulsed transverse field is discussed. Appendices of this chapter include details on the mean field equation of motion, the Landau-Zener problem, and the microscopic equation of motion in the presence of an oscillatory field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharyya, M., Chakrabarti, B.K.: Ising system in oscillating field: hysteretic response. In: Stauffer, D. (ed.) Annual Reviews of Computational Physics, vol.Ā 1, p.Ā 107. World Scientific, Singapore (1994). [7.2.3]

    Google ScholarĀ 

  2. Acharyya, M., Chakrabarti, B.K.: Response of Ising systems to oscillating and pulsed fields: hysteresis, ac, and pulse susceptibility. Phys. Rev. B 52, 6550ā€“6568 (1995). [1.1, 1.3, 7.2.3]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  3. Acharyya, M., Chakrabarti, B.K., Stinchcombe, R.B.: Hysteresis in Ising model in transverse field. J. Phys. A, Math. Gen. 27(5), 1533 (1994). [1.1, 1.3, 7.2.3]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  4. Banerjee, V., Dattagupta, S.: Model calculation for the susceptibility of a quantum spin glass. Phys. Rev. B 50, 9942ā€“9947 (1994). [7.1.3]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  5. Banerjee, V., Dattagupta, S., Sen, P.: Hysteresis in a quantum spin model. Phys. Rev. E 52, 1436ā€“1446 (1995). [1.1, 1.3, 7.2.3]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  6. Barouch, E., McCoy, B.M., Dresden, M.: Statistical mechanics of the XY model. i. Phys. Rev. A 2, 1075ā€“1092 (1970). [1.1, 1.3, 7.2.2, 7.2.2.1]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  7. Bhattacharyya, S., Das, A., Dasgupta, S.: Transverse Ising chain under periodic instantaneous quenches: dynamical many-body freezing and emergence of slow solitary oscillations. Phys. Rev. B 86(5), 054410 (2012). doi:10.1103/PhysRevB.86.054410. [1.1, 1.3, 7.2.3.1]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  8. Brout, R., MĆ¼ller, K., Thomas, H.: Tunnelling and collective excitations in a microscopic model of ferroelectricity. Solid State Commun. 4(10), 507ā€“510 (1966). [1.1, 1.2, 4.5, 6.7.2, 7.1.1]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  9. Calabrese, P., Cardy, J.: Evolution of entanglement entropy in one-dimensional systems. J.Ā Stat. Mech. Theory Exp. 2005(04), P04010 (2005). [7.2.2.1]

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  10. Calabrese, P., Cardy, J.: Time dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96, 136801 (2006). [1.1, 7.2.2.1]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  11. Calabrese, P., Cardy, J.: Quantum quenches in extended systems. J. Stat. Mech. Theory Exp. 2007(06), P06008 (2007). [7.2.2.1]

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  12. Chakrabarti, B.K., Acharyya, M.: Dynamic transitions and hysteresis. Rev. Mod. Phys. 71, 847ā€“859 (1999). [7.2.3.1]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  13. Chandra, A.K., Das, A., Chakrabarti, B.K.: Quantum Quenching, Annealing and Computation. Lecture Notes in Physics, vol. 802. Springer, Berlin (2010). [7.2.2, 8.1]

    BookĀ  MATHĀ  Google ScholarĀ 

  14. Cincio, L., Dziarmaga, J., Rams, M.M., Zurek, W.H.: Entropy of entanglement and correlations induced by a quench: dynamics of a quantum phase transition in the quantum Ising model. Phys. Rev. A 75, 052321 (2007). [7.2.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  15. Damski, B., Zurek, W.H.: Adiabatic-impulse approximation for avoided level crossings: from phase-transition dynamics to Landau-Zener evolutions and back again. Phys. Rev. A 73, 063405 (2006). [7.2.2, 7.A.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  16. Das, A.: Exotic freezing of response in a quantum many-body system. Phys. Rev. B 82, 172402 (2010). [1.1, 1.3, 7.2.3.1]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  17. Dziarmaga, J.: Dynamics of a quantum phase transition: exact solution of the quantum Ising model. Phys. Rev. Lett. 95, 245701 (2005). [1.1, 1.3, 7.2.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  18. Dziarmaga, J.: Dynamics of a quantum phase transition and relaxation to a steady state. Adv. Phys. 59(6), 1063ā€“1189 (2010). [7.2.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  19. Glauber, R.J.: Time-dependent statistics of the Ising model. J. Math. Phys. 4(2), 294ā€“307 (1963). [7.1.3, 8.6]

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  20. Greiner, M., Mandel, O., Esslinger, T., HƤnsch, T.W., Bloch, I.: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39ā€“44 (2002). [7.2.2, 7.2.2.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  21. Heims, S.P.: Master equation for Ising model. Phys. Rev. 138, A587ā€“A590 (1965). [7.1.3]

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  22. Kawasaki, K.: Diffusion constants near the critical point for time-dependent Ising models. i. Phys. Rev. 145, 224ā€“230 (1966). [7.1.3]

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  23. Kawasaki, K.: Diffusion constants near the critical point for time-dependent Ising models. ii. Phys. Rev. 148, 375ā€“381 (1966). [7.1.3]

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  24. Kawasaki, K.: Diffusion constants near the critical point for time-dependent Ising models. iii. Self-diffusion constant. Phys. Rev. 150, 285ā€“290 (1966). [7.1.3]

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  25. Kibble, T.W.B.: Some implications of a cosmological phase transition. Phys. Rep. 67(1), 183ā€“199 (1980). [7.2.2.2]

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  26. Kinoshita, T., Wenger, T., Weiss, D.S.: A quantum Newtonā€™s cradle. Nature 440, 900ā€“903 (2006). [7.2.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  27. Kopeć, T.K., Tadić, B., Pirc, R., Blinc, R.: Random fields and quantum effects in proton glasses. Z. Phys. B, Condens. Matter 78, 493ā€“499 (1990). [7.1.3]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  28. Lage, E.J.S., Stinchcombe, R.B.: Transverse Ising model with substitutional disorder: an effective-medium theory. J. Phys. C, Solid State Phys. 9(17), 3295 (1976). [7.1.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  29. Landau, L.D.: On the theory of transfer of energy at collisions ii. Phys. Z. Sowjetunion 2, 46 (1932). [7.A.2]

    Google ScholarĀ 

  30. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics (Non-relativistic Theory). Butterworth-Heineman, Oxford (1958). [7.A.2]

    Google ScholarĀ 

  31. Polkovnikov, A.: Universal adiabatic dynamics in the vicinity of a quantum critical point. Phys. Rev. B 72, 161201 (2005). [1.3, 7.2.2.2, 8.6]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  32. Polkovnikov, A., Sengupta, K., Silva, A., Vengalattore, M.: Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863ā€“883 (2011). [7.2.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  33. Rossini, D., Silva, A., Mussardo, G., Santoro, G.E.: Effective thermal dynamics following a quantum quench in a spin chain. Phys. Rev. Lett. 102, 127204 (2009). [1.1, 1.3, 7.2.2.1]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  34. Rossini, D., Suzuki, S., Mussardo, G., Santoro, G.E., Silva, A.: Long time dynamics following a quench in an integrable quantum spin chain: local versus nonlocal operators and effective thermal behavior. Phys. Rev. B 82, 144302 (2010). [1.1, 1.3, 7.2.2.1]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  35. Sengupta, K., Powell, S., Sachdev, S.: Quench dynamics across quantum critical points. Phys. Rev. A 69, 053616 (2004). [1.1, 1.3, 7.2.2.1]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  36. Suzuki, S.: In: Das, A., Chakrabarti, B.K. (eds.) Quantum Annealing and Related Optimization Method, p.Ā 207. Springer, Berlin (2005). [7.A.2]

    ChapterĀ  Google ScholarĀ 

  37. Vitanov, N.V., Garraway, B.M.: Landau-Zener model: effects of finite coupling duration. Phys. Rev. A 53, 4288ā€“4304 (1996). [7.A.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  38. Wu, W., Ellman, B., Rosenbaum, T.F., Aeppli, G., Reich, D.H.: From classical to quantum glass. Phys. Rev. Lett. 67, 2076ā€“2079 (1991). [1.1, 1.3, 6.2.1, 7.1.3]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  39. Zener, C.: Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. Ser. A 137, 696ā€“702 (1932). [7.A.2, 9.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  40. Zurek, W.H.: Cosmological experiments in superfluid helium? Nature 317, 505 (1985). [7.2.2.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

  41. Zurek, W.H., Dorner, U., Zoller, P.: Dynamics of a quantum phase transition. Phys. Rev. Lett. 95, 105701 (2005). [1.1, 1.3, 7.2.2]

    ArticleĀ  ADSĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Appendix 7.A

Appendix 7.A

7.1.1 7.A.1 Mean Field Equation of Motion

7.1.1.1 7.A.1.1 Some Analytic Solutions in the Linearised Limit

Linearisation of (7.2.113) can be carried out in three limits: namely, in the high temperature (T āˆ’1ā†’0), the low tunnelling field amplitude (Ī“ 0ā†’0) and in the adiabatic (Ļ‰ā†’0) limits.

In the first two cases, the linearised equations of motion take the forms:

$$ \tau \frac{dm^{x}}{dt} = -m^{x} + \frac{\varGamma(t)}{T} $$
(7.A.1)

and

$$ \tau \frac{dm^{z}}{dt} = - \biggl( 1- \frac{1}{T} \biggr) m^{z}, $$
(7.A.2)

in the T āˆ’1ā†’0 limit, and

$$ \tau \frac{dm^{x}}{dt} = -m^{x} + \tanh \biggl( \frac{m^{z}}{T} \biggr) \frac{\varGamma(t)}{m^{z}} $$
(7.A.3)

and

$$ \tau\frac{d m^{z}}{dt} = -m^{z} + \tanh \biggl( \frac{m^{z}}{T} \biggr), $$
(7.A.4)

in the Ī“ 0ā†’0 limit. For T>1, m z decays to zero in the first case (7.A.1). The long time solution of the dynamical equation for m z in [2] can be obtained easily as the attractive fixed point of the map describing the discretised form of the differential equation: m z(t+Ļ„)=tanh[m z(t)/T]. This gives m z=tanh(m z/T)ā‰ 0 for T<1 and m z=0 for T>1. Putting the solution for m z for T<1 into the dynamical equation for m x in (7.A.2), reduces it to the same form as (7.A.1) but with Ī“(t)/T now replaced by Ī“(t) in the second term. Defining now sā‰”Ļ‰t and Ī»=Ļ‰t, one can express the general solution of m x(t) as

$$ m^{x} (t) = J \cos(s) + K \sin(s) $$
(7.A.5)

with K=Ī»J=(Ī“ 0/Ī“)[Ī»/(1+Ī» 2)] for T>1 from (7.A.1) as well as from (7.A.2), and Ī“ 0/T replaced by Ī“ 0 for T<1 (from (7.A.2)). The loop area A x =āˆ®m x dĪ“=2KĪ“ 0 can then be expressed in the form given in (7.2.116) (containing the full Lorentzian scaling function g(Ī»)). The resulting exponents are Ī±=2,Ī²=1 and Ī³=0=Ī“ in the T āˆ’1ā†’0 limit (from (7.A.1) and (7.A.2) for T>1) and Ī±=2, Ī²=0=Ī³=Ī“ in the Ī“ 0ā†’0 limit (from (7.A.2) for T<1).

In the adiabatic (Ļ‰ āˆ’1ā‰«Ļ„, or small Ī») limit, one can write , where and : m 0=[tanh(|h|/T)](h/|h|). Collecting now the linear terms in Ī», one gets

$$ \delta m^{x} = -\lambda\frac{dm_{0}^{x}}{ds} $$
(7.A.6)

and

$$ \delta m^{z} = \frac{\delta m^{z}}{T} \tanh \biggl( \frac{\varGamma}{T} \biggr). $$
(7.A.7)

For T>1, Ī“m z=0 (of course \(m_{0}^{z}= 0\)). Using this to obtain \(m_{0}^{x}\) for the right hand side of the other equation, one gets \(\delta m^{x} = -\lambda\frac{d}{ds}\tanh[\varGamma(s)/T]\). Hence the loop area , where Ī“=Ī“ 0cos(s), can be expressed as

(7.A.8)

where y=Ī“ 0/T. As I(y) goes to Ļ€ and 4/y in the small and large y limits respectively, the loop area A x can again be expressed in the form (7.2.116) with g(x)āˆ¼x in the xā†’0 limit, and with Ī±=2, Ī²=1, Ī³=0=Ī“ in the Ī“ 0ā‰ŖT limit and with Ī±=1, Ī²=0=Ī³=Ī“ in the Ī“ 0ā‰«T limit. Although these limiting values for the exponents are not observed (because of the inaccuracy of the Linearisation approximations in the range of the study), they provide useful bounds for the observed values, and the Lorentzian scaling function appears quite naturally here.

7.1.1.2 7.A.1.2 Approximate Analytic Form of Dynamic Phase Boundary

Using the mean field equation for the z-component of magnetisation (7.2.113)

$$ \tau \frac{dm^{z}}{dt} = -m^{z} + \tanh \biggl( \frac{|h|}{T} \biggr) \frac{m^{z}}{|h|} $$
(7.A.9)

one can estimate approximately the dynamic phase boundary. For small m z, |h|āˆ¼Ī“(s), where s=Ļ‰t. Defining, Ī»=Ļ‰Ļ„, the above equation can be approximated as

$$ \lambda \frac{dm^{z}}{dt} = -m^{z} + \tanh \biggl( \frac{\varGamma(s)}{T} \biggr) \frac{m^{z}}{\varGamma(s)}= \biggl[ \frac{1}{\varGamma(s)} \tanh \biggl( \frac{\varGamma(s)}{T} \biggr)-1 \biggr]m^{z} $$
(7.A.10)

or

$$ \frac{\lambda}{2\pi} \oint \frac{dm^{z}}{m^{z}}= \frac{1}{2\pi} \int _{0}^{2\pi} \biggl[ \frac{1}{\varGamma(s)} \tanh \biggl( \frac{\varGamma(s)}{T} \biggr) -1 \biggr] \,ds. $$
(7.A.11)

The right hand side of the above equation gives the logarithm of the factor by which m z grows over a cycle. So, the equation of the phase boundary can be written as

$$ \frac{1}{\varGamma_{0}} F \biggl( \frac{\varGamma_{0}}{T} \biggr) -1 = 0, $$
(7.A.12)

where

$$ F (y) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\tanh(y \cos(s))}{ \cos(s)} \,ds; \quad y = \varGamma_{0}T. $$
(7.A.13)

For large y, ycos(s)āˆ¼y(sāˆ’Ļ€/2), and since the integrand in F(y) contributes significantly near s=Ļ€/2, we expand the tanh term as tanhx=x/(1+x 2)1/2, and get

(7.A.14)

So the approximate analytic form of phase boundary is

$$ T = \frac{\pi\varGamma_{0}/2}{ \sinh(\pi\varGamma_{0}/2)}. $$
(7.A.15)

7.1.2 7.A.2 Landau-Zener Problem and Parabolic Cylinder Functions

Let us consider a time-dependent Hamiltonian of a two-level system,

$$ H_{\mathrm{LZ}} (t) = -\alpha t\sigma^3 + \sigma^1 = \left ( \begin{array}{c@{\quad}c} -\alpha t & 1 \\ 1 & \alpha t \end{array} \right ) , $$
(7.A.16)

where Ļƒ 1 and Ļƒ 3 are Pauli matrices:

$$ \sigma^1 = \left ( \begin{array}{c@{\quad}c} 0 & 1 \\ 1 & 0 \end{array} \right ), \qquad \sigma^3 = \left ( \begin{array}{c@{\quad}c} 1 & 0 \\ 0 & -1 \end{array} \right ) . $$
(7.A.17)

Assume that the time t moves from t=āˆ’āˆž to āˆž. We express the basis vectors of the system as |0怉=(1 0)T and |1怉=(0 1)T. The eigenstates of this system are |0怉 and |1怉 when t=Ā±āˆž, while those at any finite times are superpositions of |0怉 and |1怉. We assume that the initial state of the system is |ĪØ(āˆ’āˆž)怉=|1怉. The time evolution is determined by the Schrƶdinger equation:

$$ i\frac{d}{dt}\bigl|\varPsi(t)\bigr\rangle= H_{\mathrm{LZ}}(t)\bigl|\varPsi(t)\bigr\rangle. $$
(7.A.18)

We expand |ĪØ(t)怉 as

$$ \bigl|\varPsi(t)\bigr\rangle= \psi_0(t)|0\rangle+ \psi_1(t)|1 \rangle. $$
(7.A.19)

The Schrƶdinger equation yields

(7.A.20)
(7.A.21)

Our problem is to solve this set of equations under the initial condition, Ļˆ 0(āˆ’āˆž)=0 and |Ļˆ 1(āˆ’āˆž)|=1, up to an unessential phase factor. This problem is called the Landau-Zener problem and the solution is given by the parabolic cylinder functions [91, 242, 243, 388, 413, 443].

Eliminating Ļˆ 1 in (7.A.21) by using (7.A.20), one obtains an equation of Ļˆ 0(t) as

$$ \frac{d^2}{dt^2}\psi_0(t) + \bigl(1 - i\alpha+ \alpha^2 t^2 \bigr)\psi_0(t) = 0 . $$
(7.A.22)

Define a new variable z by

$$ t = \frac{e^{i\pi/4}}{(2\alpha)^{1/2}}z . $$
(7.A.23)

Then Eq. (7.A.22) is arranged as

$$ \frac{d^2}{dz^2}\psi_0\biggl(\frac{e^{i\pi/4}}{(2\alpha)^{1/2}}z\biggr) + \biggl(\frac{i}{2\alpha} + \frac{1}{2} - \frac{z^2}{4} \biggr) \psi_0\biggl(\frac{e^{i\pi/4}}{\sqrt{2\alpha}}z\biggr) = 0 . $$
(7.A.24)

Writing U(z)=Ļˆ 0(e iĻ€/4 z/(2Ī±)1/2), one obtains

$$ \frac{d^2}{dz^2}U(z) + \biggl(p + \frac{1}{2} - \frac{z^2}{4} \biggr)U(z) = 0 , \quad p = i/2\alpha. $$
(7.A.25)

The solutions of (7.A.25) are parabolic cylinder functions denoted by D p (z). If D p (z) is a solution, D p (āˆ’z), D āˆ’pāˆ’1(iz), and D āˆ’pāˆ’1(āˆ’iz) are also solutions of the same equation. These four functions are linearly dependent. For instance, D p (āˆ’z) and D āˆ’pāˆ’1(āˆ’iz) are expressed by D p (z) and D āˆ’pāˆ’1(iz) as

(7.A.26)
(7.A.27)

D p (z) has following asymptotic expansions for |z|ā‰«1 and |z|ā‰«|p|:

$$ D_p(z) \approx e^{-z^2/4}z^p \bigl(1 + O \bigl(z^{-2}\bigr) \bigr) \quad \biggl[\mbox{for } {|}\arg z| < \frac{3}{4}\pi\biggr] , $$
(7.A.28)
(7.A.29)
(7.A.30)

D p (z) satisfies following recursion relations:

(7.A.31)
(7.A.32)
(7.A.33)

Now, the initial condition for U(z) is written as U(zā†’e Ā±i3Ļ€/4Ɨāˆž)ā†’0, where upper and lower signs correspond to Ī±>0 and Ī±<0 respectively. To find the solution which meets this condition, one needs to look into the asymptotic values D p (z), D p (āˆ’z), D āˆ’pāˆ’1(iz), and D āˆ’pāˆ’1(āˆ’iz). EquationsĀ (7.A.28)ā€“(7.A.30) are followed by

(7.A.34)
(7.A.35)
(7.A.36)
(7.A.37)

where note that p=i/2Ī± is a pure-imaginary number. With this observation, one finds that D āˆ’pāˆ’1(āˆ’iz) and D āˆ’pāˆ’1(iz) are appropriate solutions for Ī±>0 and Ī±<0 respectively. Therefore

$$ \psi_0(t) = A D_{-p-1}(\mp iz) = A D_{-p-1} \bigl({\mp} ie^{-i\pi/4}(2\alpha)^{1/2}t\bigr) , $$
(7.A.38)

and

(7.A.39)

where a recursion relation, (7.A.33), is used in the last equality. The factor A is determined by the initial condition: |Ļˆ 1(āˆ’āˆž)|=1. An asymptotic expansion of D āˆ’p (āˆ“iz) for zā†’e Ā±i3Ļ€/4Ɨāˆž yields

$$ D_{-p}(-iz) \approx e^{z^2/4}(\mp iz)^{-p} + O \bigl(z^{-1}\bigr) , $$
(7.A.40)

which is followed by

$$ \bigl|D_{-p}\bigl(-iz\to-ie^{i3\pi/4}\times\infty\bigr)\bigr| = \bigl| e^{\mp i p \pi/4} \bigr| = e^{\pm\pi/8\alpha} = e^{\pi/8|\alpha|} . $$
(7.A.41)

Therefore A is fixed as A=e āˆ’Ļ€/8|Ī±|/(2Ī±)1/2 and the solution is obtained as

(7.A.42)
(7.A.43)

for Ī±>0, and

(7.A.44)
(7.A.45)

for Ī±<0.

Finally we investigate the limit of zā†’e āˆ“iĻ€/4Ɨāˆž corresponding to tā†’āˆž. From asymptotic expansions (7.A.29) and (7.A.30), one has

(7.A.46)
$$ \bigl|D_{-p}\bigl(-iz\to e^{\pm i p 3\pi/4}\times\infty \bigr)\bigr|^2 = \bigl|e^{\pm i p 3\pi/4}\bigr|^2 = e^{\mp3\pi/4\alpha} , $$
(7.A.47)

where we have used an identity regarding the Gamma function: |Ī“(1+iy)|2=2Ļ€y/(e Ļ€yāˆ’e āˆ’Ļ€y). Thus the Landau-Zener formula on the non-adiabatic transition probability is obtained as

$$ \bigl|\psi_1(t\to\infty)\bigr|^2 = e^{-\pi/|\alpha|} . $$
(7.A.48)

7.1.3 7.A.3 Microscopic Equation of Motion for Oscillatory Transverse Field

We start from the Liouville equation of motion (with Planckā€™s constant ħ=1)

$$ \frac{d \rho}{dt} = -i \bigl[ H_{\mathrm{tot}},\rho(t)\bigr] $$
(7.A.49)

where H tot is the total Hamiltonian defined in (7.2.120). In the interaction picture the evolution is governed by

$$ i \frac{d \rho_{I}(t)}{dt} = \bigl[V_{I},\rho_{I}(t)\bigr] =V_{I}^{\times} (t) \rho_{I}(0) $$
(7.A.50)

where

$$ \rho_{I}(t) = \exp \bigl[i (H_{s}+H_{B})t \bigr] \rho(t) \exp \bigl[-i (H_{s}+H_{B}) t\bigr] $$
(7.A.51)

and

$$ V_{I} (t) = \exp \bigl[i(H_{s}+H_{B})\bigr] H_{I} \exp \bigl[-(H_{s}+H_{B})\bigr] . $$
(7.A.52)

\(V_{I}^{\times}(t)\) is the Liouville operator associated with V I (t). The solution of (7.A.50) can be formally written as

$$ \rho_{I} (t) = \exp _{T} \biggl[ {-}i \int _{0}^{t} V_{I}^{\times} \bigl(t'\bigr) \,dt' \biggr] \rho_{I} (0), $$
(7.A.53)

with exp T denoting a time-ordered series with the operators for the latest time at the left. Note that at t=0, Ļ I (0)=Ļ(0). Combining (7.A.51) and (7.A.53), we have

$$ \rho(t) = \exp \bigl[{-}i (H_{s}+H_{B})t\bigr] \exp_{T} \biggl[ {-}i \int_{0}^{t} V_{I}^{\times} \bigl(t'\bigr) \,dt' \biggr] \rho(0) \exp \bigl[i (H_{s}+H_{B})t\bigr]. $$
(7.A.54)

The rate equations for magnetisation m Ī¼ (Ī¼=x,y,z) are obtained from

$$ \frac{dm^{\mu}}{dt} = \mathrm{Tr} \biggl[ \frac{d\rho(t)}{dt} S^{\mu} \biggr] $$
(7.A.55)

where

$$ m^{\mu} = \mathrm{Tr} \bigl(\rho(t) S^{\mu}\bigr) $$
(7.A.56)

and Ļ(t) is given in (7.A.54). However, it is easier to work in terms of a reduced density matrix for the spin system alone:

$$ \rho_{s} (t) = \mathrm{Tr}_{b}\, \rho (t) $$
(7.A.57)

where Tr b denotes a trace operation over the degrees of freedom of the heat bath. Thus, from (7.A.54)

(7.A.58)

The angular brackets 怈ā‹Æ怉 refer to an averaging over the bath degrees of freedom. It has been assumed that the density matrix can be factorised as

$$ \rho(0) \simeq \rho_{b} \otimes\rho_{s}, $$
(7.A.59)

and the cumulant expansion theorem has been used. The physical ground for writing (7.A.59) is that at t=0, the spin-system is assumed to be decoupled from the heat bath; it is at that instant that the perturbation H I which couples the spin system to the bath is switched on. The subsequent time evolution of Ļ s (0) is what we are interested in. Assuming invariance under time translation, we can write

$$ \rho_{s}(t) = \mathrm{e}^{-i H_{s}t} \exp _{T} \biggl( -\int_{0}^{t} (t-\tau) \bigl\langle V_{I}^{\times} (\tau) V_{I}^{\times} (\tau) \bigr\rangle \,d\tau \biggr) \rho(0) \mathrm{e}^{iH_{s}t} . $$
(7.A.60)

There has been an additional assumption in writing the above equation, viz.,

$$ \bigl\langle V_{I}^{\times} \bigl(t'\bigr) \bigr\rangle= \bigl\langle V_{I}^{\times}(0) \bigr\rangle= 0. $$
(7.A.61)

This can always be ensured by an appropriate choice of the coupling term H I . This assumption is necessitated by the physical requirement of the model that at a large enough time, the system should equilibrate to a situation governed by the Hamiltonian H s alone. Using a short-time approximation for the bath correlation functions of the kind \(\langle\hat{b} (\tau) \hat{b}(0)\rangle\), viz., that correlation functions die out after a time short compared to any other ā€œtimesā€ of physical interest in H s , the upper limit in the integrals in (7.A.60) can be extended to āˆž. This enables us to further write the master equation as

$$ \frac{d\rho_{s}(t)}{dt} = -i\bigl[ H_{s},\rho_{s}(t)\bigr]- \mathrm{e}^{-iH_{s}t} \biggl[ \int_{0}^{\infty} d \tau \,\bigl\langle V_{I}^{\times} (\tau) V_{I}^{\times} (0) \bigr\rangle \biggr] \mathrm{e}^{iH_{s}t} \rho_{s}(t). $$
(7.A.62)

While using the above equation in the rotated frame, one must replace V by \(\tilde{V}\), H s by \(\tilde{H}_{s}\), Ļ(t) and \(\tilde{\rho} (t)\) by etc. where, for example,

$$ \tilde{\rho} (t) = R_{y}^{-1} U_{z}^{-1} \rho(t) U_{z} R_{y}. $$
(7.A.63)

The rate equations for the components of magnetisation are obtained using the above formalism where we have

(7.A.64)

We then use \(m^{\mu} = \mathrm{Tr}_{s}[\rho(t)S^{\mu}] = \mathrm{Tr}_{s}[ U_{z}R_{y} (t) \tilde{\rho}(t) R_{y}^{-1}U_{z}^{-1}S^{\mu} ]\) and (7.A.62) to get the rate equations (7.2.128)ā€“(7.2.130) (see [22] for further details). The bath correlations which will appear in the calculations are not calculated but parametrised in terms of a phenomenological relaxation rate by making use of Kubo relations. In order to parametrise the bath correlations, we use the following Kubo relation

$$ \int_{-\infty}^{\infty} d\tau\, \mathrm{e}^{ih \tau} \bigl\langle \hat{b} (\tau) \hat{b} (0) \bigr\rangle= \mathrm{e}^{\beta h} \int _{-\infty}^{\infty} d\tau\, \mathrm{e}^{-ih\tau} \bigl \langle \hat{b} (\tau) \hat{b} (0) \bigr\rangle $$
(7.A.65)

so that we can write

$$ g^{2} \int_{-\infty}^{\infty} d\tau\, \mathrm{e}^{\pm ih \tau} \bigl\langle \hat{b}(\tau) \hat{b} (0) \bigr\rangle= \lambda \frac{\mathrm{e}^{\pm\beta h/2}}{ \mathrm{e}^{\beta h/2} + \mathrm{e}^{-\beta h/2}}, $$
(7.A.66)

where

(7.A.67)

is the phenomenological relaxation rate.

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suzuki, S., Inoue, Ji., Chakrabarti, B.K. (2013). Dynamics of Quantum Ising Systems. In: Quantum Ising Phases and Transitions in Transverse Ising Models. Lecture Notes in Physics, vol 862. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33039-1_7

Download citation

Publish with us

Policies and ethics